Skip to main content
Log in

Validation of Bacteroidales-based microbial source tracking markers for pig fecal pollution and their application in two rivers of North China

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

In China, pig feces is the predominant source of excrement produced by animal husbandry. Improper use or direct discharge of pig feces can result in contamination of natural water systems. Microbial source tracking (MST) technology can identify the sources of fecal pollution in environmental water, and contribute to the management of pig fecal pollution by local environmental protection agencies. However, the accuracy of such assays can be context-dependent, and they have not been comprehensively evaluated under Chinese conditions. We aimed to compare the performance of five previously reported pig-specific MST assays (PF, Pig-Bac1SYBR, Pig-Bac2SYBR, Pig-1-BacTaqMan, and Pig-2-BacTaqMan, which are based on Bacteroidales 16S rRNA gene markers) and apply them in two rivers of North China. We collected a total of 173 fecal samples from pigs, cows, goats, chickens, humans, and horses across China. The PF assay optimized in this study showed outstanding qualitative performance and achieved 100% specificity and sensitivity. However, the two SYBR green qPCR assays (Pig-Bac1SYBR and Pig-Bac2SYBR) cross-reacted with most non-pig fecal samples. In contrast, both the Pig-1-BacTaqMan and Pig-2-BacTaqMan assays gave 100% specificity and sensitivity. Of these, the Pig-2-BacTaqMan assay showed higher reproducibility. Our results regarding the specificity of these pig-specific MST assays differ from those reported in Thailand, Japan, and America. Using the PF and Pig-2-BacTaqMan assays, a field test comparing the levels of pig fecal pollution in rivers near a pig farm before and after comprehensive environmental pollution governance indicated that pig fecal pollution was effectively controlled at this location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernhard A E, Field K G (2000). A PCR assay to discriminate human and ruminant feces on the basis of host differences in Bacteroides- Prevotella genes encoding 16S rRNA. Applied and Environmental Microbiology, 66(10): 4571–4574

    Article  CAS  Google Scholar 

  • Boehm A B, Van de Werfhorst L C, Griffith J F, Holden P A, Jay J A, Shanks O C, Wang D, Weisberg S B (2013). Performance of fortyone microbial source tracking methods: A twenty-seven lab evaluation study. Water Research, 47(18): 6812–6828

    Article  CAS  Google Scholar 

  • Dick L K, Bernhard A E, Brodeur T J, Santo Domingo J W, Simpson J M, Walters S P, Field K G (2005). Host distributions of uncultivated fecal Bacteroidales bacteria reveal genetic markers for fecal source identification. Applied and Environmental Microbiology, 71(6): 3184–3191

    Article  CAS  Google Scholar 

  • Dorai-Raj S, Grady J O, Colleran E (2009). Specificity and sensitivity evaluation of novel and existing Bacteroidales and Bifidobacteriaspecific PCR assays on feces and sewage samples and their application for microbial source tracking in Ireland. Water Research, 43(19): 4980–4988

    Article  CAS  Google Scholar 

  • Fremaux B, Gritzfeld J, Boa T, Yost C K (2009). Evaluation of hostspecific Bacteroidales 16S rRNA gene markers as a complementary tool for detecting fecal pollution in a prairie watershed. Water Research, 43(19): 4838–4849

    Article  CAS  Google Scholar 

  • Gao D, Tao Y (2012). Current molecular biologic techniques for characterizing environmental microbial community. Frontiers of Environmental Science & Engineering, 6(1): 82–97

    Article  Google Scholar 

  • Gourmelon M, Caprais M P, Segura R, Le Mennec C, Lozach S, Piriou J Y, Rince A (2007). Evaluation of two library-independent microbial source tracking methods to identify sources of fecal contamination in french estuaries. Applied and Environmental Microbiology, 73(15): 4857–4866

    Article  CAS  Google Scholar 

  • Green H C, Dick L K, Gilpin B, Samadpour M, Field K G (2012). Genetic markers for rapid PCR-based identification of gull, Canada goose, duck, and chicken fecal contamination in water. Applied and Environmental Microbiology, 78(2): 503–510

    Article  CAS  Google Scholar 

  • Harwood V J, Staley C, Badgley B D, Borges K, Korajkic A (2014). Microbial source tracking markers for detection of fecal contamination in environmental waters: Relationships between pathogens and human health outcomes. FEMS Microbiology Reviews, 38(1): 1–40

    Article  CAS  Google Scholar 

  • Heaney C D, Myers K, Wing S, Hall D, Baron D, Stewart J R (2015). Source tracking swine fecal waste in surface water proximal to swine concentrated animal feeding operations. Science of the Total Environment, 511: 676–683

    Article  CAS  Google Scholar 

  • Huang Y (2017). Current situation and development trend of pig industry in China. Livestock and Poultry Industry, 28(8): 102–104 (in Chinese)

    Google Scholar 

  • Kildare B J, Leutenegger C M, McSwain B S, Bambic D G, Rajal V B, Wuertz S (2007). 16S rRNA-based assays for quantitative detection of universal, human-, cow-, and dog-specific fecal Bacteroidales: A Bayesian approach. Water Research, 41(16): 3701–3715

    Article  CAS  Google Scholar 

  • Layton B A, Cao Y, Ebentier D L, Hanley K, Balleste E, Brandao J, Byappanahalli M, Converse R, Farnleitner A H, Gentry-Shields J, Gidley ML, Gourmelon M, Lee C S, Lee J, Lozach S, Madi T, Meijer W G, Noble R, Peed L, Reischer G H, Rodrigues R, Rose J B, Schriewer A, Sinigalliano C, Srinivasan S, Stewart J, Van De Werfhorst L C, Wang D, Whitman R, Wuertz S, Jay J, Holden P A, Boehm A B, Shanks O, Griffith J F (2013). Performance of human fecal anaerobe-associated PCR-based assays in a multi-laboratory method evaluation study. Water Research, 47(18): 6897–6908

    Article  CAS  Google Scholar 

  • Li X, Song S (2018). Hazards and countermeasures of livestock manure pollution. Pollution Prevention Technique, 31(5): 86–90 (in Chinese)

    Google Scholar 

  • Malla B, Ghaju Shrestha R, Tandukar S, Bhandari D, Inoue D, Sei K, Tanaka Y, Sherchand J B, Haramoto E (2018). Validation of hostspecific Bacteroidales quantitative PCR assays and their application to microbial source tracking of drinking water sources in the Kathmandu Valley, Nepal. Journal of Applied Microbiology, 125(2): 609–619

    Article  CAS  Google Scholar 

  • Mattioli M C, Pickering A J, Gilsdorf R J, Davis J, Boehm A B (2013). Hands and water as vectors of diarrheal pathogens in Bagamoyo, Tanzania. Environmental Science & Technology, 47(1): 355–363

    Article  CAS  Google Scholar 

  • Mieszkin S, Furet J P, Corthier G, Gourmelon M (2009). Estimation of pig fecal contamination in a river catchment by real-time PCR using two pig-specific Bacteroidales 16S rRNA genetic markers. Applied and Environmental Microbiology, 75(10): 3045–3054

    Article  CAS  Google Scholar 

  • Nshimyimana J P, Cruz M C, Thompson R J, Wuertz S (2017). Bacteroidales markers for microbial source tracking in Southeast Asia. Water Research, 118: 239–248

    Article  CAS  Google Scholar 

  • Odagiri M, Schriewer A, Hanley K, Wuertz S, Misra P R, Panigrahi P, Jenkins M W (2015). Validation of Bacteroidales quantitative PCR assays targeting human and animal fecal contamination in the public and domestic domains in India. Science of the Total Environment, 502: 462–470

    Article  CAS  Google Scholar 

  • Okabe S, Okayama N, Savichtcheva O, Ito T (2007). Quantification of host-specific Bacteroides-Prevotella 16S rRNA genetic markers for assessment of fecal pollution in freshwater. Applied Microbiology and Biotechnology, 74(4): 890–901

    Article  CAS  Google Scholar 

  • Ridley C M, Jamieson R C, Truelstrup Hansen L, Yost C K, Bezanson G S (2014). Baseline and storm event monitoring of Bacteroidales marker concentrations and enteric pathogen presence in a rural Canadian watershed. Water Research, 60: 278–288

    Article  CAS  Google Scholar 

  • Shanks O C, White K, Kelty C A, Hayes S, Sivaganesan M, Jenkins M, Varma M, Haugland R A (2010). Performance assessment PCRbased assays targeting Bacteroidales genetic markers of bovine fecal pollution. Applied and Environmental Microbiology, 76(5): 1359–1366

    Article  CAS  Google Scholar 

  • Somnark P, Chyerochana N, Kongprajug A, Mongkolsuk S, Sirikanchana K (2018a). PCR data and comparative performance of Bacteroidales microbial source tracking genetic markers. Data in Brief, 19: 156–169

    Article  Google Scholar 

  • Somnark P, Chyerochana N, Mongkolsuk S, Sirikanchana K (2018b). Performance evaluation of Bacteroidales genetic markers for human and animal microbial source tracking in tropical agricultural watersheds. Environmental Pollution, 236: 100–110

    Article  CAS  Google Scholar 

  • US EPA (2016). Definition and procedure for the determination of the method detection limit. Available at the website of http://www.epa.gov/sites/production/files/2016-12

    Google Scholar 

  • Wang H, Jia L, Wu R, Wang J, Ning Z (2014). Study on sensitivity and specificity of the Bacteroidales biomarkers for microbial source tracking in the Pearl River Delta region. China Environmental Science, 34(8): 2118–2125

    CAS  Google Scholar 

  • Wilkes G, Brassard J, Edge T A, Gannon V, Jokinen C C, Jones T H, Marti R, Neumann N F, Ruecker N J, Sunohara M, Topp E, Lapen D R (2013). Coherence among different microbial source tracking markers in a small agricultural stream with or without livestock exclusion practices. Applied and Environmental Microbiology, 79 (20): 6207–6219

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No.2016YFC0503601), and Excellent Young Teachers’ Scientific Research Ability Improvement Project of University of Chinese Academy of Sciences (No. Y95401FXX2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruyin Liu.

Additional information

Highlights

• Pig feces is the predominant excrement produced by animal husbandry in China.

• The PF, Pig-1-BacTaqMan, and Pig-2-BacTaqMan MST assays showed better performance.

• The pig-specific MST assays can contribute to managing the pig fecal pollution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Li, Z., Liu, R. et al. Validation of Bacteroidales-based microbial source tracking markers for pig fecal pollution and their application in two rivers of North China. Front. Environ. Sci. Eng. 14, 67 (2020). https://doi.org/10.1007/s11783-020-1246-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-020-1246-9

Keywords

Navigation