Skip to main content
Log in

A novel sequence batch membrane carbonation photobioreactor developed for microalgae cultivation

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

In this study, a novel sequence batch membrane carbonation photobioreactor was developed for microalgae cultivation. Herein, membrane module was endowed functions as microalgae retention and CO2 carbonation. The results in the batch experiments expressed that the relatively optimal pore size of membranes was 30 nm, photosynthetically active radiation was 36 W/m and the CO2 concentration was 10% (v/v). In long-term cultivation, the microalgal concentration separately accumulated up to 1179.0 mg/L and 1296.4 mg/L in two periods. The concentrations of chlorophyll a, chlorophyll b and carotenoids were increased about 23.2, 14.9 and 6.3 mg/L respectively in period I; meanwhile, the accumulation was about 25.0, 14.5, 6.6 mg/L respectively in the period II. Furthermore, the pH was kept about 5.5–7.5 due to intermittent carbonation mode, which was suitable for the growth of microalgae. Transmembrane pressure (TMP) was only increased by 0.19 and 0.16 bar in the end of periods I and II, respectively. The pure flux recovered to 75%–80% of the original value by only hydraulic cleaning. Scanning electron microscope images also illustrated that carbonation through membrane module could mitigate fouling levels greatly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assunção J, Batista A P, Manoel J, da Silva T L, Marques P, Reis A, Gouveia L (2017). CO2 utilization in the production of biomass and biocompounds by three different microalgae. Engineering in Life Sciences, 17(10): 1126–1135

    Article  CAS  Google Scholar 

  • Bilad M R, Arafat H A, Vankelecom I F J (2014a). Membrane technology in microalgae cultivation and harvesting: a review. Biotechnology Advances, 32(7): 1283–1300

    Article  CAS  Google Scholar 

  • Bilad M R, Discart V, Vandamme D, Foubert I, Muylaert K, Vankelecom I F (2014b). Coupled cultivation and pre-harvesting of microalgae in a membrane photobioreactor (MPBR). Bioresource Technology, 155: 410–417

    Article  CAS  Google Scholar 

  • Brennan L, Owende P (2010). Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable & Sustainable Energy Reviews, 14(2): 557–577

    Article  CAS  Google Scholar 

  • Cheah W Y, Show P L, Chang J S, Ling T C, Juan J C (2015). Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology, 184: 190–201

    Article  CAS  Google Scholar 

  • Chen C Y, Chang J S, Chang H Y, Chen T Y, Wu J H, Lee W L (2013). Enhancing microalgal oil/lipid production from Chlorella sorokiniana CY1 using deep-sea water supplemented cultivation medium. Biochemical Engineering Journal, 77: 74–81

    Article  CAS  Google Scholar 

  • Chen C Y, Yeh K L, Aisyah R, Lee D J, Chang J S (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresource Technology, 102(1): 71–81

    Article  CAS  Google Scholar 

  • Cheng L, Zhang L, Chen H, Gao C (2006). Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Separation and Purification Technology, 50(3): 324–329

    Article  CAS  Google Scholar 

  • Chisti Y (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3): 294–306

    Article  CAS  Google Scholar 

  • Chiu S Y, Kao C Y, Huang T T, Lin C J, Ong S C, Chen C D, Chang J S, Lin C S (2011). Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresource Technology, 102(19): 9135–9142

    Article  CAS  Google Scholar 

  • Chojnacka K, Marquez-Rocha F J (2004). Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology (Faisalabad), 3(1): 21–34

    Google Scholar 

  • Contreras A, García F, Molina E, Merchuk J C (1998). Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnology and Bioengineering, 60(3): 317–325

    Article  CAS  Google Scholar 

  • Defrance L, Jaffrin M Y (1999). Comparison between filtrations at fixed transmembrane pressure and fixed permeate flux: application to a membrane bioreactor used for wastewater treatment. Journal of Membrane Science, 152(2): 203–210

    Article  CAS  Google Scholar 

  • Discart V, Bilad M R, Marbelia L, Vankelecom I F J (2014). Impact of changes in broth composition on Chlorella vulgaris cultivation in a membrane photobioreactor (MPBR) with permeate recycle. Bioresource Technology, 152: 321–328

    Article  CAS  Google Scholar 

  • Fernandes B D, Mota A, Ferreira A, Dragone G, Teixeira J A, Vicente A A (2014). Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation. Chemical Engineering Science, 117:445–454

    Article  CAS  Google Scholar 

  • Han Y, Jiang Y, Gao C (2015). High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Applied Materials & Interfaces, 7(15): 8147–8155

    Article  CAS  Google Scholar 

  • Henrard A A, de Morais M G, Costa J A V (2011). Vertical tubular photobioreactor for semicontinuous culture of Cyanobium sp. Bioresource Technology, 102(7): 4897–4900

    Article  CAS  Google Scholar 

  • Ho S H, Chen C Y, Chang J S (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113: 244–252

    Article  CAS  Google Scholar 

  • Hu J, Nagarajan D, Zhang Q, Chang J S, Lee D J (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36(1): 54–67

    Article  CAS  Google Scholar 

  • Huang W, Chu H, Dong B, Liu J (2014). Evaluation of different algogenic organic matters on the fouling of microfiltration membranes. Desalination, 344: 329–338

    Article  CAS  Google Scholar 

  • Jiang Y, Peng X, Zhang W T, Liu (2012). Enhancement of acid resistance of Scenedesmus dimorphus by acid adaptation. Journal of Applied Phycology, 24(6): 1637–1641

    Article  CAS  Google Scholar 

  • Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013). Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresource Technology, 128: 359–364

    Article  CAS  Google Scholar 

  • Jorquera O, Kiperstok A, Sales E A, Embiruçu M, Ghirardi M L (2010). Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresource Technology, 101(4): 1406–1413

    Article  CAS  Google Scholar 

  • Kalontarov M, Doud D F R, Jung E E, Angenent L T, Erickson D (2014). Hollow fiber membrane arrays for CO2 delivery in microalgae photobioreactors. RSC Advances, 4(3): 1460–1468

    Article  CAS  Google Scholar 

  • Kao C Y, Chen T Y, Chang Y B, Chiu T W, Lin H Y, Chen C D, Chang J S, Lin C S (2014). Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp. Bioresource Technology, 166: 485–493

    Article  CAS  Google Scholar 

  • Kim D G, La H J, Ahn C Y, Park Y H, Oh H M (2011a). Harvest of Scenedesmus sp. with bioflocculant and reuse of culture medium for subsequent high-density cultures. Bioresource Technology, 102(3): 3163–3168

    Article  CAS  Google Scholar 

  • Kim H W, Cheng J, Rittmann B E (2016). Direct membrane-carbonation photobioreactor producing photoautotrophic biomass via carbon dioxide transfer and nutrient removal. Bioresource Technology, 204: 32–37

    Article  CAS  Google Scholar 

  • Kim H W, Marcus A K, Shin J H, Rittmann B E (2011b). Advanced control for photoautotrophic growth and CO2-utilization efficiency using a membrane carbonation photobioreactor (MCPBR). Environmental Science & Technology, 45(11): 5032–5038

    Article  CAS  Google Scholar 

  • Kumar A, Yuan X, Sahu A K, Dewulf J, Ergas S J, Van Langenhove H (2010). A hollow fiber membrane photo-bioreactor for CO2 sequestration from combustion gas coupled with wastewater treatment: a process engineering approach. Journal of Chemical Technology and Biotechnology Biotechnology, 85(3): 387–394

    Article  CAS  Google Scholar 

  • Li Y, Chen Y F, Chen P, Min M, Zhou W, Martinez B, Zhu J, Ruan R (2011a). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102(8): 5138–5144

    Article  CAS  Google Scholar 

  • Li Y, Han D, Sommerfeld M, Hu Q (2011b). Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited conditions. Bioresource Technology, 102(1): 123–129

    Article  CAS  Google Scholar 

  • Li Y, Zhou W, Hu B, Min M, Chen P, Ruan R R (2011c). Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors. Bioresource Technology, 102(23): 10861–10867

    Article  CAS  Google Scholar 

  • Liang F, Wen X, Luo L, Geng Y, Li Y (2014). Physicochemical effects on sulfite transformation in a lipid-rich Chlorella sp. strain. Chinese Journal of Oceanology and Limnology, 32(6): 1288–1296

    Article  CAS  Google Scholar 

  • Mata T M, Martins A A, Caetano N S (2010). Microalgae for biodiesel production and other applications: A review. Renewable & Sustainable Energy Reviews, 14(1): 217–232

    Article  CAS  Google Scholar 

  • Meo A, Priebe X L, Weuster-Botz D (2017). Lipid production with Trichosporon oleaginosus in a membrane bioreactor using microalgae hydrolysate. Journal of Biotechnology, 241: 1–10

    Article  CAS  Google Scholar 

  • Miao M, Yao X, Shu L, Yan Y, Wang Z, Li N, Cui X, Lin Y, Kong Q (2016). Mixotrophic growth and biochemical analysis of Chlorella vulgaris cultivated with synthetic domestic wastewater. International Biodeterioration and Biodegradation, 113: 120–125

    Article  CAS  Google Scholar 

  • Pegallapati A K, Nirmalakhandan N (2012). Modeling algal growth in bubble columns under sparging with CO2-enriched air. Bioresource Technology, 124: 137–145

    Article  CAS  Google Scholar 

  • Phukan M M, Chutia R S, Konwar B K, Kataki R (2011). Microalgae Chlorella as a potential bio-energy feedstock. Applied Energy, 88(10): 3307–3312

    Article  CAS  Google Scholar 

  • Piligaev A V, Sorokina K N, Bryanskaya A V, Demidov E A, Kukushkin R G, Kolchanov N A, Parmov V N, Pel’tek S E (2013). Research on the biodiversity of Western Siberia microalgae for third-generation biofuel production processes. Russian Journal of Genetics: Applied Research, 3(6): 487–492

    Google Scholar 

  • Pires J C M, Alvim-Ferraz M C M, Martins F G, Simões M (2012). Carbon dioxide capture from flue gases using microalgae: Engineering aspects and biorefinery concept. Renewable & Sustainable Energy Reviews, 16(5): 3043–3053

    Article  CAS  Google Scholar 

  • Pivokonsky M, Kloucek O, Pivokonska L (2006). Evaluation of the production, composition and aluminum and iron complexation of algogenic organic matter. Water Research, 40(16): 3045–3052

    Article  CAS  Google Scholar 

  • Ramanan R, Kannan K, Deshkar A, Yadav R, Chakrabarti T (2010). Enhanced algal CO2 sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresource Technology, 101(8): 2616–2622

    Article  CAS  Google Scholar 

  • Razzak S A, Hossain M M, Lucky R A, Bassi A S, da Lasa H (2013). Integrated CO2 capture, wastewater treatment and biofuel production by microalgae culturing-A review. Renewable & Sustainable Energy Reviews, 27: 622–653

    Article  CAS  Google Scholar 

  • Rossignol N, Lebeau T, Jaouen P, Robert J M (2000). Comparison of two membrane-photobioreactors, with free or immobilized cells, for the production of pigments by a marine diatom. Bioprocess Engineering, 23(5): 495–501

    Article  CAS  Google Scholar 

  • Salih F M (2011). Microalgae tolerance to high concentrations of carbon dioxide: A review. Journal of Environmental Protection, 02(05): 648–654

    Article  CAS  Google Scholar 

  • Schoepp N G, Ansari W S, Dallwig J A, Gale D, Burkart M D, Mayfield S P (2015). Rapid estimation of protein, lipid, and dry weight in microalgae using a portable LED fluorometer. Algal Research, 11: 108–112

    Article  Google Scholar 

  • Singh G, Patidar S K (2018). Microalgae harvesting techniques: A review. Journal of Environmental Management, 217: 499–508

    Article  Google Scholar 

  • Singh R N, Sharma S (2012). Development of suitable photobioreactor for algae production: A review. Renewable & Sustainable Energy Reviews, 16(4): 2347–2353

    Article  CAS  Google Scholar 

  • Solovchenko A, Merzlyak M N, Khozin-Goldberg I, Cohen Z, Boussiba S (2010). Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in D5 desaturase by nitrogen starvation and highlight. Journal of Phycology, 46(4): 763–772

    Article  CAS  Google Scholar 

  • Su Z F, Li X, Hu H Y, Wu Y H, Tsutomu N (2011). Culture of Scenedesmus sp. LX1 in the modified effluent of a wastewater treatment plant of an electric factory by photo-membrane bioreactor. Bioresource Technology, 102(17): 7627–7632

    Google Scholar 

  • Suali E, Sarbatly R, Shaleh S R M, Lahin F A, Anisuzzaman S M (2016). Correlation study of microalgae carbonation in membrane integrated photobioreactor. IOP Conference Series: Earth and Environmental Science, 36(1): 012043

    Google Scholar 

  • Suh I S, Lee C G (2003). Photobioreactor engineering: Design and performance. Biotechnology and Bioprocess Engineering; BBE, 8(6): 313–321

    Article  CAS  Google Scholar 

  • Wang J, Yin Y (2018). Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microbial Cell Factories, 17(1): 22–38

    Article  CAS  Google Scholar 

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009). Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. Journal of Environmental Engineering, 135(11): 1115–1122

    Article  CAS  Google Scholar 

  • Yang Y, Qiao S, Jin R, Zhou J, Quan X (2018). Fouling control mechanisms in filtrating natural organic matters by electro-enhanced carbon nanotubes hollow fiber membranes. Journal of Membrane Science, 553: 54–62

    Article  CAS  Google Scholar 

  • Zhao F, Zhang Y, Chu H, Jiang S, Yu Z, Wang M, Zhou X, Zhao J (2018). A uniform shearing vibration membrane system reducing membrane fouling in algae harvesting. Journal of Cleaner Production, 196: 1026–1033

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financial supported by the National Natural Science Foundation of China (Grant No. 51878111), the LiaoNing Revitalization Talents Program (No. XLYC1807067), and the Programme of Introducing Talents of Discipline to Universities (No. B13012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sen Qiao.

Additional information

Highlights

• A novel SBM-C-PBR was constructed for microalgae cultivation.

• Membrane fouling was greatly mitigated by membrane carbonation.

• NH4 and P removal rates were around 80% in SBM-C-PBR.

• Biomass was completely retained by membrane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, C., Qiao, S., Yang, Y. et al. A novel sequence batch membrane carbonation photobioreactor developed for microalgae cultivation. Front. Environ. Sci. Eng. 13, 92 (2019). https://doi.org/10.1007/s11783-019-1176-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-019-1176-6

Keywords

Navigation