Skip to main content
Log in

Influence of phosphate on deposition and detachment of TiO2 nanoparticles in soil

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The widespread use of TiO2 nanoparticles (NPs) makes inevitable their release into the soil. Phosphate is also widespread within soil, and is likely copresent with TiO2 NPs. However, the influence of phosphate on deposition/release— and thereby on transport— of TiO2 NPs in soil is yet to be elucidated. In this study we conducted saturated column experiments to systematically examine the transport of TiO2 NPs in soil amended with phosphate at different ionic strengths (ISs) (1, 10, 100 mmol/L NaCl) and pHs (4 and 9). Results show that the deposition of TiO2 NPs decreased with decreasing IS, increasing pH, and when soil absorbed phosphate. These observations are qualitatively in agreement with Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energy calculations, because the repulsive energy barrier is larger and secondary minimum depth is smaller at a lower IS, higher pH, and in the presence of phosphate. Accordingly, both primary- and secondary-minimum deposition were inhibited. Interestingly, although the deposition was less at higher pH and in the presence of phosphate, the subsequent spontaneous detachment and detachment by reduction of solution IS in these cases were greater. In addition, the presence of phosphate in the solution can cause a small quantity of attached TiO2 NPs to detach, even without perturbations of physical and chemical conditions. Our study was the first to investigate the influence of phosphate on detachment of TiO2 NPs and the results have important implication for accurate prediction of fate and transport of TiO2 NPs in subsurface environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam V, Loyaux-Lawniczak S, Quaranta G (2015). Characterization of engineered TiO2 nanomaterials in a life cycle and risk assessments perspective. Environmental Science and Pollution Research, 22(15): 11175–11192

    Article  CAS  Google Scholar 

  • Bhattacharjee S, Elimelech M (1997). Surface element integration: A novel technique for evaluation of DLVO interaction between a particle and a flat plate. Journal of Colloid and Interface Science, 193(2): 273–285

    Article  CAS  Google Scholar 

  • Bolan N S, Syers J K, Tillman R W (1986). Ionic strength effects on surface charge and adsorption of phosphate and sulphate by soil. Journal of Soil Science, 37(3): 379–388

    Article  CAS  Google Scholar 

  • Bradford S A, Torkzaban S (2013). Colloid interaction energies for physically and chemically heterogeneous porous media. Langmuir, 29(11): 3668–3676

    Article  CAS  Google Scholar 

  • Bradford S A, Torkzaban S (2015). Determining parameters and mechanisms of colloid retention and release in porous media. Langmuir, 31(44): 12096–12105

    Article  CAS  Google Scholar 

  • Bradford S A, Torkzaban S, Shapiro A (2013). A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media. Langmuir, 29(23): 6944–6952

    Article  CAS  Google Scholar 

  • Bradford S A, Yates S R, Bettahar M, Simunek J (2002). Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resources Research, 38(12): 63–1–63–12

    Article  Google Scholar 

  • Brar S K, Verma M, Tyagi R D, Surampalli R Y (2010). Engineered nanoparticles in wastewater and wastewater sludge—Evidence and impacts. Waste Management, 30(3): 504–520

    Article  CAS  Google Scholar 

  • Cai L, Peng S, Wu D, Tong M (2016). Effect of different-sized colloids on the transport and deposition of titanium dioxide nanoparticles in quartz sand. Environmental Pollution, 208(Pt B): 637–644

    Article  CAS  Google Scholar 

  • Cai L, Tong M, Wang X, Kim H (2014). Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand. Environmental Science & Technology, 48(13): 7323–7332

    Article  CAS  Google Scholar 

  • Chen G, Liu X, Su C (2011). Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms. Langmuir, 27(9): 5393–5402

    Article  CAS  Google Scholar 

  • Chen L, Sabatini D A, Kibbey T C G (2010). Retention and release of TiO2 nanoparticles in unsaturated porous media during dynamic saturation change. Journal of Contaminant Hydrology, 118(3–4): 199–207

    Article  CAS  Google Scholar 

  • Chen M, Xu N, Cao X, Zhou K, Chen Z, Wang Y, Liu C (2015). Facilitated transport of anatase titanium dioxides nanoparticles in the presence of phosphate in saturated sands. Journal of Colloid and Interface Science, 451: 134–143

    Article  CAS  Google Scholar 

  • Chen X, Mao S S (2007). Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 107(7): 2891–2959

    Article  CAS  Google Scholar 

  • Clément L, Hurel C, Marmier N (2013). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants: Effects of size and crystalline structure. Chemosphere, 90(3): 1083–1090

    Article  Google Scholar 

  • Elimelech M, O’Melia C R (1990). Kinetics of deposition of colloidal particles in porous media. Environmental Science & Technology, 24(10): 1528–1536

    Article  CAS  Google Scholar 

  • Esfandyari Bayat A, Junin R, Derahman M N, Samad A A (2015). TiO2 nanoparticle transport and retention through saturated limestone porous media under various ionic strength conditions. Chemosphere, 134: 7–15

    Article  CAS  Google Scholar 

  • Fang J, Shan X Q, Wen B, Lin J M, Owens G (2009). Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environmental Pollution, 157(4): 1101–1109

    Article  CAS  Google Scholar 

  • Fang J, Xu M J, Wang D J, Wen B, Han J Y (2013). Modeling the transport of TiO2 nanoparticle aggregates in saturated and unsaturated granular media: Effects of ionic strength and pH. Water Research, 47(3): 1399–1408

    Article  CAS  Google Scholar 

  • Fang J, Zhang K, Sun P, Lin D, Shen B, Luo Y (2016). Co-transport of Pb2+ and TiO2 nanoparticles in repacked homogeneous soil columns under saturation condition: Effect of ionic strength and fulvic acid. Science of the Total Environment, 571: 471–478

    Article  CAS  Google Scholar 

  • Gerloff K, Fenoglio I, Carella E, Kolling J, Albrecht C, Boots A W, Förster I, Schins R P F (2012). Distinctive toxicity of TiO2 rutile/anatase mixed phase nanoparticles on Caco-2 cells. Chemical Research in Toxicology, 25(3): 646–655

    Article  CAS  Google Scholar 

  • Godinez I G, Darnault C J G (2011). Aggregation and transport of nano-TiO2 in saturated porous media: effects of pH, surfactants and flow velocity. Water Research, 45(2): 839–851

    Article  CAS  Google Scholar 

  • Gogos A, Moll J, Klingenfuss F, van der Heijden M, Irin F, Green M J, Zenobi R, Bucheli T D (2016). Vertical transport and plant uptake of nanoparticles in a soil mesocosm experiment. Journal of Nanobiotechnology, 14(1): 40

    Article  Google Scholar 

  • Gottschalk F, Sondere T, Schols R, Nowack B (2009). Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, Fullerenes) for different regions. Environmental Science & Technology, 43%(24): 9216–9222

    Article  Google Scholar 

  • Guo P, Xu N, Li D, Huangfu X, Li Z (2018). Aggregation and transport of rutile titanium dioxide nanoparticles with montmorillonite and diatomite in the presence of phosphate in porous sand. Chemosphere, 204: 327–334

    Article  CAS  Google Scholar 

  • Guzman K A, Finnegan M P, Banfield J F (2006). Influence of surface potential on aggregation and transport of titania nanoparticles. Environmental Science & Technology, 40(24): 7688–7693

    Article  Google Scholar 

  • Hahn M W, Abadzic D, O’Melia C R (2004). Aquasols: On the role of secondary minima. Environmental Science & Technology, 38(22): 5915–5924

    Article  CAS  Google Scholar 

  • Hahn M W, O’Meliae C R (2004). Deposition and reentrainment of Brownian particles in porous media under unfavorable chemical conditions: Some concepts and applications. Environmental Science & Technology, 38(1): 210–220

    Article  CAS  Google Scholar 

  • He F, Zhang M, Qian T, Zhao D (2009). Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling. Journal of Colloid and Interface Science, 334(1): 96–102

    Article  CAS  Google Scholar 

  • Healy K E, Ducheyne P (1992). Hydration and preferential molecular adsorption on titanium in vitro. Biomaterials, 13(8): 553–561

    Article  CAS  Google Scholar 

  • Hoek E M V, Agarwal G K (2006). Extended DLVO interactions between spherical particles and rough surfaces. Journal of Colloid and Interface Science, 298(1): 50–58

    Article  CAS  Google Scholar 

  • Ju-Nam Y, Lead J R (2008). Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Science of the Total Environment, 400(1–3): 396–414

    Article  CAS  Google Scholar 

  • Kim C, Lee J, Lee S (2015). TiO2 nanoparticle sorption to sand in the presence of natural organic matter. Environmental Earth Sciences, 73(9): 5585–5591

    Article  CAS  Google Scholar 

  • Lalley J, Han C, Li X, Dionysiou D D, Nadagouda M N (2016). Phosphate adsorption using modified iron oxide-based sorbents in lake water: Kinetics, equilibrium, and column tests. Chemical Engineering Journal, 284: 1386–1396

    Article  CAS  Google Scholar 

  • Ley T W, Stevens R G, Topielec R R, Neibling W H (1994). Soil water monitoring and measurement. PNW., 88(6): 2054–8

    Google Scholar 

  • Lin D, Story S D, Walker S L, Huang Q, Liang W, Cai P (2017). Role of pH and ionic strength in the aggregation of TiO2 nanoparticles in the presence of extracellular polymeric substances from Bacillus subtilis. Environmental Pollution, 228: 35–42

    Article  CAS  Google Scholar 

  • Liu C, Xu N, Feng G, Zhou D, Cheng X, Li Z (2017). Hydrochars and phosphate enhancing the transport of nanoparticle silica in saturated sands. Chemosphere, 189: 213–223

    Article  CAS  Google Scholar 

  • Loosli F, Le Coustumer P, Stoll S (2013). TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability. Water Research, 47(16): 6052–6063

    Article  CAS  Google Scholar 

  • Molnar I L, Gerhard J I, Willson C S, O’Carroll D M (2015a). The impact of immobile zones on the transport and retention of nanoparticles in porous media. Water Resources Research, 51(11): 8973–8994

    Article  Google Scholar 

  • Molnar I L, Johnson W P, Gerhard J I, Willson C S, O’Carroll D M (2015b). Predicting colloid transport through saturated porous media: A critical review. Water Resources Research, 51(9): 6804–6845

    Article  Google Scholar 

  • Pardo M T, Guadalix M E, Garcia-Gonzalez M T (1992). Effect of pH and background electrolyte on P sorption by variable charge soils. Geoderma, 54(1–4): 275–284

    Article  CAS  Google Scholar 

  • Park C M, Chu K H, Heo J, Her N, Jang M, Son A, Yoon Y (2016). Environmental behavior of engineered nanomaterials in porous media: A review. Journal of Hazardous Materials, 309: 133–150

    Article  CAS  Google Scholar 

  • Piccinno F, Gottschalk F, Seeger S, Nowack B (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14(9): 1109

    Article  Google Scholar 

  • Rasmuson A, Pazmino E, Assemi S, Johnson W P (2017). Contribution of nano-to microscale roughness to heterogeneity: Closing the gap between unfaovrable and favorable colloid attachment conditions. Environmental Science & Technology, 51(4): 2151–2160

    Article  CAS  Google Scholar 

  • Rastghalam Z S, Cheng T, Freake B (2018). Fine particle attachment to quartz sand in the presence of multiple interacting dissolved components. Science of the Total Environment, 645: 499–508

    Article  CAS  Google Scholar 

  • Robichaud C O, Uyar A E, Darby M R, Zucker L G, Wiesner M R (2009). Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environmental Science & Technology, 43(12): 4227–4233

    Article  CAS  Google Scholar 

  • Rottman J, Platt L C, Sierra-Alvarez R, Shadman F (2013). Removal of TiO2 nanoparticles by porous media: Effect of filtration media and water chemistry. Chemical Engineering Journal, 217: 212–220

    Article  CAS  Google Scholar 

  • Schijven J F, Hassanizadeh S M (2000). Removal of viruses by soil passage: Overview of modeling, processes, and parameters. Critical Reviews in Environmental Science and Technology, 30(1):79

    Article  Google Scholar 

  • Seetha N, Majid Hassanizadeh S, Mohan Kumar M S, Raoof A (2015). Correlation equations for average deposition rate coefficients of nanoparticles in a cylindrical pore. Water Resources Research, 51(10): 8034–8059

    Article  Google Scholar 

  • Shen C, Bradford S A, Li T, Li B, Huang Y (2018). Can nanoscale surface charge heterogeneity really explain colloid detachment from primary minima upon reduction of solution ionic strength? Journal of Nanoparticle Research, 20(6): 165

    Article  Google Scholar 

  • Shen C, Jin Y, Li B, Zheng W, Huang Y (2014). Facilitated attachment of nanoparticles at primary minima by nanoscale roughness is susceptible to hydrodynamic drag under unfavorable chemical conditions. Science of the Total Environment, 466–467: 1094–1102

    Article  Google Scholar 

  • Shen C, Lazouskaya V, Zhang H, Wang F, Li B, Jin Y, Huang Y (2012a). Theoretical and experimental investigation of detachment of colloids from rough collector surfaces. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 410: 98–110

    Article  CAS  Google Scholar 

  • Shen C, Wang F, Li B, Jin Y, Wang L P, Huang Y (2012b). Application of DLVO energy map to evaluate interactions between spherical colloids and rough surfaces. Langmuir, 28(41): 14681–14692

    Article  CAS  Google Scholar 

  • Shen C, Zhang M, Zhang S, Wang Z, Zhang H, Li B, Huang Y (2015). Influence of surface heterogeneities on reversibility of fullerene (nC60) nanoparticle attachment in saturated porous media. Journal of Hazardous Materials, 290: 60–68

    Article  CAS  Google Scholar 

  • Solovitch N, Labille J, Rose J, Chaurand P, Borschneck D, Wiesner MR, Bottero J Y (2010). Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environmental Science & Technology, 44(13): 4897–4902

    Article  CAS  Google Scholar 

  • Song Y, Hahn H H, Hoffmann E (2002). Effects of solution conditions on the precipitation of phosphate for recovery. Chemosphere, 48(10): 1029–1034

    Article  CAS  Google Scholar 

  • Tang Z, Cheng T (2018). Stability and aggregation of nanoscale titanium dioxide particle (nTiO2): Effect of cation valence, humic acid, and clay colloids. Chemosphere, 192: 51–58

    Article  CAS  Google Scholar 

  • Tufenkji N, Elimelech M (2004). Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science & Technology, 38(2): 529–536

    Article  CAS  Google Scholar 

  • Tufenkji N, Elimelech M (2005). Breakdown of colloid filtration theory: Role of the secondary energy minimum and surface charge heterogeneities. Langmuir, 21(3): 841–852

    Article  CAS  Google Scholar 

  • Wang Y, Gao B, Morales V L, Tian Y, Wu L, Gao J, Bai W, Yang L (2012). Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions. Journal of Nanoparticle Research, 14(9): 1095

    Article  Google Scholar 

  • Wang Z, Wang D, Li B, Wang J, Li T, Zhang M, Huang Y, Shen C (2016). Detachment of fullerene nC60 nanoparticles in saturated porous media under flow/stop-flow conditions: Column experiments and mechanistic explanations. Environmental Pollution, 213: 698–709

    Article  CAS  Google Scholar 

  • Windler L, Lorenz C, von Goetz N, Hungerbühler K, Amberg M, Heuberger M, Nowack B (2012). Release of titanium dioxide from textiles during washing. Environmental Science & Technology, 46(15): 8181–8188

    Article  CAS  Google Scholar 

  • Wu Y, Cheng T (2016). Stability of nTiO2 particles and their attachment to sand: Effects of humic acid at different pH. Science of the Total Environment, 541: 579–589

    Article  CAS  Google Scholar 

  • Yao K M, Habibian M T, O’Melia C R (1971). Water and waste water filtration: Concepts and applications. Environmental Science & Technology, 5(11):1105–1112

    Article  CAS  Google Scholar 

  • Zhang R, Zhang H, Tu C, Hu X, Li L, Luo Y, Christie P (2015). Facilitated transport of titanium dioxide nanoparticles by humic substances in saturated porous media under acidic conditions. Journal of Nanoparticle Research, 17(4): 165

    Article  Google Scholar 

  • Zhu X, Chang Y, Chen Y (2010). Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 78(3): 209–215

    Article  CAS  Google Scholar 

  • Zou Y, Jayasuriya S, Manke CW, Mao G (2015). Influence of nanoscale surface roughness on colloidal force measurements. Langmuir, 31(38): 10341–10350

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support provided by the National Natural Science Foundation of China (Grant Nos. 41671222 and 41271009) and National Key Research and Development Program of China (No. 2017YFD0800301).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoguo Li.

Additional information

HIGHLIGHTS

• We examined influence of phosphate on transport of TiO2 NPs in soil.

• Deposition was reduced at higher pH and by adsorption of phosphate in soil.

• Release was more for NPs initially deposited at higher pH.

• Release was more for NPs initially deposited in the presence of phosphate.

• Surface roughness and charge heterogeneity play a role in the deposition/release.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Shen, C., Du, Y. et al. Influence of phosphate on deposition and detachment of TiO2 nanoparticles in soil. Front. Environ. Sci. Eng. 13, 79 (2019). https://doi.org/10.1007/s11783-019-1163-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-019-1163-y

Keywords

Navigation