Advertisement

Biological removal of selenate in saline wastewater by activated sludge under alternating anoxic/oxic conditions

  • Yuanyuan Zhang
  • Masashi Kuroda
  • Shunsuke Arai
  • Fumitaka Kato
  • Daisuke Inoue
  • Michihiko IkeEmail author
Research Article

Abstract

Selenium (Se)-containing industrial wastewater is often coupled with notable salinity. However, limited studies have examined biological treatment of Se-containing wastewater under high salinity conditions. In this study, a sequencing batch reactor (SBR) inoculated with activated sludge was applied to treat selenate in synthetic saline wastewater (3% w/v NaCl) supplemented with lactate as the carbon source. Start-up of the SBR was performed with addition of 1–5 mM of selenate under oxygen-limiting conditions, which succeeded in removing more than 99% of the soluble Se. Then, the treatment of 1 mM Se with cycle duration of 3 days was carried out under alternating anoxic/oxic conditions by adding aeration period after oxygen-limiting period. Although the SBR maintained soluble Se removal of above 97%, considerable amount of solid Se remained in the effluent as suspended solids and total Se removal fluctuated between about 40 and 80%. Surprisingly, the mass balance calculation found a considerable decrease of Se accumulated in the SBR when the aeration period was prolonged to 7 h, indicating very efficient Se biovolatilization. Furthermore, microbial community analysis suggested that various Se-reducing bacteria coordinately contributed to the removal of Se in the SBR and main contributors varied depending on the operational conditions. This study will offer implications for practical biological treatment of selenium in saline wastewater.

Keywords

Activated sludge Selenate reduction Saline wastewater Sequencing batch reactor Alternating anoxic/oxic conditions Selenium biovolatilization 

Notes

Acknowledgements

This work was partially supported by JSPS KAKENHI (Grant No. JP15K16145).

Supplementary material

11783_2019_1154_MOESM1_ESM.pdf (37 kb)
Supporting materials

References

  1. Baumann P, Bowditch R D, Baumann L, Beaman B (1983). Taxonomy of marine Pseudomonas species: P. stanieri sp. nov.; P. perfectomarina sp. nov., nom. rev.; P nautica: and P doudoroffii. International Journal of Systematic Bacteriology, 33(4): 857–865CrossRefGoogle Scholar
  2. Caccavo F, Frolund B, Van Ommen K F, Nielsen P H (1996). Deflocculation of activated sludge by the dissimilatory Fe (III)-reducing bacterium Shewanella alga BrY. Applied and Environmental Microbiology, 62(4): 1487–1490Google Scholar
  3. Caporaso J G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F D, Costello E K, Fierer N, Peña A G, Goodrich J K, Gordon J I, Huttley G A, Kelley S T, Knights D, Koenig J E, Ley R E, Lozupone C A, McDonald D, Muegge B D, Pirrung M, Reeder J, Sevinsky J R, Turnbaugh P J, Walters W A, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5): 335–336CrossRefGoogle Scholar
  4. Chang H W, Nam Y D, Kwon H Y, Park J R, Lee J S, Yoon J H, An K G, Bae J W (2007). Marinobacterium halophilum sp. nov., a marine bacterium isolated from the Yellow Sea. International Journal of Systematic and Evolutionary Microbiology, 57(1): 77–80CrossRefGoogle Scholar
  5. Cupp-Sutton K A, Ashby M T (2016). Biological chemistry of hydrogen selenide. Antioxidants (Basel), 5(4): 42CrossRefGoogle Scholar
  6. Doran J W, Alexander M (1977). Microbial transformations of selenium. Applied and Environmental Microbiology, 33(1): 31–37Google Scholar
  7. Fujita M, Ike M, Nishimoto S, Takahashi K, Kashiwa M (1997). Isolation and characterization of a novel selenate-reducing bacterium, Bacillus sp. SF-1. Journal of Fermentation and Bioengineering, 83(6): 517–522CrossRefGoogle Scholar
  8. García-Depraect O, Guerrero-Barajas C, Jan-Roblero J, Ordaz A (2017). Characterization of a marine microbial community used for enhanced sulfate reduction and copper precipitation in a two-step process. Applied Biochemistry and Biotechnology, 182(2): 452–467CrossRefGoogle Scholar
  9. García-Solares S M, Ordaz A, Monroy-Hermosillo O, Jan-Roblero J, Guerrero-Barajas C (2014). High sulfate reduction efficiency in a UASB using an alternative source of sulfidogenic sludge derived from hydrothermal vent sediments. Applied Biochemistry and Biotechnology, 174(8): 2919–2940CrossRefGoogle Scholar
  10. Hahnke S, Langer T, Koeck D E, Klocke M (2016). Description of Proteiniphilum saccharofermentans sp. nov., Petrimonas mucosa sp. nov. and Fermentimonas caenicola gen. nov., sp. nov., isolated from mesophilic laboratory-scale biogas reactors, and emended description of the genus Proteiniphilum. International Journal of Systematic and Evolutionary Microbiology, 66(3): 1466–1475CrossRefGoogle Scholar
  11. Jain R, Seder-Colomina M, Jordan N, Dessi P, Cosmidis J, van Hullebusch E D, Weiss S, Farges F, Lens P N L (2015). Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge. Journal of Hazardous Materials, 295: 193–200CrossRefGoogle Scholar
  12. Kagami T, Narita T, Kuroda M, Notaguchi E, Yamashita M, Sei K, Soda S, Ike M (2013). Effective selenium volatilization under aerobic conditions and recovery from the aqueous phase by Pseudomonas stutzeri NT-I. Water Research, 47(3): 1361–1368CrossRefGoogle Scholar
  13. Kharaka Y K, Ambats G, Presser T S, Davis R A (1996). Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes. Applied Geochemistry, 11(6): 797–802CrossRefGoogle Scholar
  14. Kincannon D F, Gaudy Jr A F (1966). Some effects of high salt concentrations on activated sludge. Journal-Water Pollution Control Federation, 38(7): 1148–1159Google Scholar
  15. Kuroda M, Notaguchi E, Sato A, Yoshioka M, Hasegawa A, Kagami T, Narita T, Yamashita M, Sei K, Soda S, Ike M (2011). Characterization of Pseudomonas stutzeri NT-I capable of removing soluble selenium from the aqueous phase under aerobic conditions. Journal of Bioscience and Bioengineering, 112(3): 259–264CrossRefGoogle Scholar
  16. Lenz M, Lens P N L (2009). The essential toxin: the changing perception of selenium in environmental sciences. Science of the Total Environment, 407(12): 3620–3633CrossRefGoogle Scholar
  17. Levican A, Collado L, Aguilar C, Yustes C, Diéguez A L, Romalde J L, Figueras M J (2012). Arcobacter bivalviorum sp. nov. and Arcobacter venerupis sp. nov., new species isolated from shellfish. Systematic and Applied Microbiology, 35(3): 133–138CrossRefGoogle Scholar
  18. Li J, Yu L, Yu D, Wang D, Zhang P, Ji Z (2014). Performance and granulation in an upflow anaerobic sludge blanket (UASB) reactor treating saline sulfate wastewater. Biodegradation, 25(1): 127–136CrossRefGoogle Scholar
  19. Liu W T, Hanada S, Marsh T L, Kamagata Y, Nakamura K (2002). Kineosphaera limosa gen. nov., sp. nov., a novel Gram-positive polyhydroxyalkanoate-accumulating coccus isolated from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 52(Pt 5): 1845–1849Google Scholar
  20. Macy J M, Lawson S (1993). Cell yield (YM) of Thauera selenatis grown anaerobically with acetate plus selenate or nitrate. Archives of Microbiology, 160(4): 295–298CrossRefGoogle Scholar
  21. Mal J, Nancharaiah Y V, van Hullebusch E D, Lens P N L (2017). Biological removal of selenate and ammonium by activated sludge in a sequencing batch reactor. Bioresource Technology, 229: 11–19CrossRefGoogle Scholar
  22. Muscatello J R, Janz D M (2009). Selenium accumulation in aquatic biota downstream of a uranium mining and milling operation. Science of the Total Environment, 407(4): 1318–1325CrossRefGoogle Scholar
  23. Nancharaiah Y V, Joshi H M, Hausner M, Venugopalan V P (2008). Bioaugmentation of aerobic microbial granules with Pseudomonas putida carrying TOL plasmid. Chemosphere, 71(1): 30–35CrossRefGoogle Scholar
  24. Nancharaiah Y V, Lens P N L (2015). Selenium biomineralization for biotechnological applications. Trends in Biotechnology, 33(6): 323–330CrossRefGoogle Scholar
  25. Narasingarao P, Häggblom M M (2007). Identification of anaerobic selenate-respiring bacteria from aquatic sediments. Applied and Environmental Microbiology, 73(11): 3519–3527CrossRefGoogle Scholar
  26. Oremland R S, Blum J S, Culbertson C W, Visscher P T, Miller L G, Dowdle P, Strohmaier F E (1994). Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Applied and Environmental Microbiology, 60(8): 3011–3019Google Scholar
  27. Oremland R S, Hollibaugh J T, Maest A S, Presser T S, Miller L G, Culbertson C W (1989). Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: Biogeochemical significance of a novel, sulfate-independent respiration. Applied and Environmental Microbiology, 55(9): 2333–2343Google Scholar
  28. Peiffer J A, Spor A, Koren O, Jin Z, Tringe S G, Dangl J L, Buckler E S, Ley R E (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences of the United States of America, 110(16): 6548–6553CrossRefGoogle Scholar
  29. Poehlein A, Andreesen J R, Daniel R (2014). Complete genome sequence of amino acid-utilizing Eubacterium acidaminophilum al-2 (DSM 3953). Genome Announcements, 2(3): e00573–14CrossRefGoogle Scholar
  30. Reed D T, Pepper S E, Richmann M K, Smith G, Deo R, Rittmann B E (2007). Subsurface bio-mediated reduction of higher-valent uranium and plutonium. Journal of Alloys and Compounds, 444–445: 376–382CrossRefGoogle Scholar
  31. Santos S, Ungureanu G, Boaventura R, Botelho C (2015). Selenium contaminated waters: An overview of analytical methods, treatment options and recent advances in sorption methods. Science of the Total Environment, 521–522: 246–260CrossRefGoogle Scholar
  32. Satomi M, Kimura B, Hamada T, Harayama S, Fujii T (2002). Phylogenetic study of the genus Oceanospirillum based on 16S rRNA and gyrB genes: Emended description of the genus Oceanospirillum, description of Pseudospirillum gen. nov., Oceanobacter gen. nov. and Terasakiella gen. nov. and transfer of Oceanospirillum jannaschii and Pseudomonas stanieri to Marinobacterium as Marinobacterium jannaschii comb. nov. and Marinobacterium stanieri comb. nov. International Journal of Systematic and Evolutionary Microbiology, 52(3): 739–747Google Scholar
  33. Soda S, Hasegawa A, Kuroda M, Hanada A, Yamashita M, Ike M (2015). Selenium recovery from kiln powder of cement manufacturing by chemical leaching and bioreduction. Water Science and Technology, 72(8): 1294–1300CrossRefGoogle Scholar
  34. Soda S, Kashiwa M, Kagami T, Kuroda M, Yamashita M, Ike M (2011). Laboratory-scale bioreactors for soluble selenium removal from selenium refinery wastewater using anaerobic sludge. Desalination, 279(1–3): 433–438CrossRefGoogle Scholar
  35. Soda S, Ma W, Kuroda M, Nishikawa H, Zhang Y, Ike M (2018). Characterization of moderately halotolerant selenate- and tellurite-reducing bacteria isolated from brackish areas in Osaka. Bioscience, Biotechnology, and Biochemistry, 82(1): 173–181CrossRefGoogle Scholar
  36. Staicu L C, van Hullebusch E D, Lens P N L, Pilon-Smits E A H, Oturan M A (2015a). Electrocoagulation of colloidal biogenic selenium. Environmental Science and Pollution Research International, 22(4): 3127–3137CrossRefGoogle Scholar
  37. Staicu L C, van Hullebusch E D, Oturan M A, Ackerson C J, Lens P N L (2015b). Removal of colloidal biogenic selenium from wastewater. Chemosphere, 125: 130–138CrossRefGoogle Scholar
  38. Subedi G, Taylor J, Hatam I, Baldwin S A (2017). Simultaneous selenate reduction and denitrification by a consortium of enriched mine site bacteria. Chemosphere, 183: 536–545CrossRefGoogle Scholar
  39. Takada K, Shiba T, Yamaguchi T, Akane Y, Nakayama Y, Soda S, Inoue D, Ike M (2018). Cake layer bacterial communities during different biofouling stages in full-scale membrane bioreactors. Bioresource Technology, 259: 259–267CrossRefGoogle Scholar
  40. Ueki A, Goto K, Ohtaki Y, Kaku N, Ueki K (2017). Description of Anaerotignum aminivorans gen. nov., sp. nov., a strictly anaerobic, amino-acid-decomposing bacterium isolated from a methanogenic reactor, and reclassification of Clostridium propionicum, Clostridium neopropionicum and Clostridium lactatifermentans as species of the genus Anaerotignum. International Journal of Systematic and Evolutionary Microbiology, 67(10): 4146–4153CrossRefGoogle Scholar
  41. Van Hullebusch E D (2017). Bioremediation of Selenium Contaminated Wastewater. Cham: Springer NatureGoogle Scholar
  42. Van Trappen S, Tan T L, Samyn E, Vandamme P (2005). Alcaligenes aquatilis sp. nov., a novel bacterium from sediments of the Weser Estuary, Germany, and a salt marsh on Shem Creek in Charleston Harbor, USA. International Journal of Systematic and Evolutionary Microbiology, 55(6): 2571–2575CrossRefGoogle Scholar
  43. Yan R, Gauthier D, Flamant G, Peraudeau G, Lu J, Zheng C (2001). Fate of selenium in coal combustion: Volatilization and speciation in the flue gas. Environmental Science & Technology, 35(7): 1406–1410CrossRefGoogle Scholar
  44. Zannoni D, Borsetti F, Harrison J J, Turner R J (2008). The bacterial response to the chalcogen metalloids Se and Te. Advances in Microbial Physiology, 53: 1–72Google Scholar
  45. Zhang Y, Kuroda M, Arai S, Kato F, Inoue D, Ike M (2019b). Biological treatment of selenate-containing saline wastewater by activated sludge under oxygen-limiting conditions. Water Research, 154: 327–335CrossRefGoogle Scholar
  46. Zhang Y, Kuroda M, Nakatani Y, Soda S, Ike M (2019a). Removal of selenite from artificial wastewater with high salinity by activated sludge in aerobic sequencing batch reactors. Journal of Bioscience and Bioengineering, 127(5): 618–624CrossRefGoogle Scholar
  47. Zhang Y Q, Frankenberger Jr W T (1999). Effects of soil moisture, depth, and organic amendments on selenium volatilization. Journal of Environmental Quality, 28(4): 1321–1326CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yuanyuan Zhang
    • 1
  • Masashi Kuroda
    • 1
  • Shunsuke Arai
    • 2
  • Fumitaka Kato
    • 2
  • Daisuke Inoue
    • 1
  • Michihiko Ike
    • 1
    Email author
  1. 1.Division of Sustainable Energy and Environmental Engineering, Graduate School of EngineeringOsaka UniversitySuita, OsakaJapan
  2. 2.Nippon Steel & Sumitomo Metal CorporationFuttsu, ChibaJapan

Personalised recommendations