Skip to main content
Log in

Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Petroleum hydrocarbons, mainly consisting of n-alkanes and polycyclic aromatic hydrocarbons (PAHs), are considered as priority pollutants and biohazards in the environment, eventually affecting the ecosystem and human health. Though many previous studies have investigated the change of bacterial community and alkane degraders during the degradation of petroleum hydrocarbons, there is still lack of understanding on the impacts of soil alkane contamination level. In the present study, microcosms with different n-alkane contamination (1%, 3% and 5%) were set up and our results indicated a complete alkane degradation after 30 and 50 days in 1%- and 3%-alkane treatments, respectively. In all the treatments, alkanes with medium-chain length (C11-C14) were preferentially degraded by soil microbes, followed by C27-alkane in 3% and 5% treatments. Alkane contamination level slightly altered soil bacterial community, and the main change was the presence and abundance of dominant alkane degraders. Thermogemmatisporaceae, Gemmataceae and Thermodesulfovibrionaceae were highly related to the degradation of C14- and C27-alkanes in 5% treatment, but linked to alkanes with medium-chain (C11-C18) in 1% treatment and C21-alkane in 3% treatment, respectively. Additionally, we compared the abundance of three alkane-monooxygenase genes, e.g., alk_A, alk_P and alk_R. The abundance of alk_R gene was highest in soils, and alk_P gene was more correlated with alkane degradation efficiency, especially in 5% treatment. Our results suggested that alkane contamination level showed non-negligible effects on soil bacterial communities to some extents, and particularly shaped alkane degraders and degrading genes significantly. This study provides a better understanding on the response of alkane degraders and bacterial communities to soil alkane concentrations, which affects their biodegradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acer O, Guven K, Bekler F M, Gul-Guven R (2016). Isolation and characterization of long-chain alkane-degrading Acinetobacter sp. BT1A from oil-contaminated soil in Diyarbakir, in the Southeast of Turkey. Bioremediation Journal, 20(1): 80–87

    CAS  Google Scholar 

  • Alonso-Gutiérrez J, Figueras A, Albaigés J, Jiménez N, Viñas M, Solanas A M, Novoa B (2009). Bacterial communities from shoreline environments (costa da morte, northwestern Spain) affected by the prestige oil spill. Applied and Environmental Microbiology, 75(11): 3407–3418

    Google Scholar 

  • Amouric A, Quéméneur M, Grossi V, Liebgott P P, Auria R, Casalot L (2010). Identification of different alkane hydroxylase systems in Rhodococcus ruber strain SP2B, an hexane-degrading actinomycete. Journal of Applied Microbiology, 108(6): 1903–1916

    CAS  Google Scholar 

  • Baek K H, Yoon B D, Cho D H, Kim B H, Oh H M, Kim H S (2009). Monitoring bacterial population dynamics using real-time PCR during the bioremediation of crude-oil-contaminated soil. Journal of Microbiology and Biotechnology, 19(4): 339–345

    CAS  Google Scholar 

  • Bamforth S M, Singleton I (2005). Bioremediation of polycyclic aromatic hydrocarbons: Current knowledge and future directions. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 80(7): 723–736

    CAS  Google Scholar 

  • Binazadeh M, Karimi I A, Li Z (2009). Fast biodegradation of long chain n-alkanes and crude oil at high concentrations with Rhodococcus sp. Moj-3449. Enzyme and Microbial Technology, 45(3): 195–202

    CAS  Google Scholar 

  • Callaghan AV, Davidova I A, Savage-Ashlock K, Parisi VA, Gieg L M, Suflita J M, Kukor J J, Wawrik B (2010). Diversity of benzyl- and alkylsuccinate synthase genes in hydrocarbon-impacted environments and enrichment cultures. Environmental Science & Technology, 44(19): 7287–7294

    CAS  Google Scholar 

  • Campeão M E, Reis L, Leomil L, de Oliveira L, Otsuki K, Gardinali P, Pelz O, Valle R, Thompson F L, Thompson C C (2017). The deep-sea microbial community from the Amazonian Basin associated with oil degradation. Frontiers in Microbiology, 8: 1019

    Google Scholar 

  • Carls M G, Thedinga J F (2010). Exposure of pink salmon embryos to dissolved polynuclear aromatic hydrocarbons delays development, prolonging vulnerability to mechanical damage. Marine Environmental Research, 69(5): 318–325

    CAS  Google Scholar 

  • Chandra S, Sharma R, Singh K, Sharma A (2013). Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Annals of Microbiology, 63(2): 417–431

    CAS  Google Scholar 

  • Cheng L, Shi S, Li Q, Chen J, Zhang H, Lu Y (2014). Progressive degradation of crude oil n-alkanes coupled to methane production under mesophilic and thermophilic conditions. PLoS One, 9(11): e113253

    Google Scholar 

  • Coleman N V, Yau S, Wilson N L, Nolan L M, Migocki M D, Ly M A, Crossett B, Holmes A J (2011). Untangling the multiple monooxygenases of Mycobacterium chubuense strain NBB4, a versatile hydrocarbon degrader. Environmental Microbiology Reports, 3(3): 297–307

    CAS  Google Scholar 

  • Das N, Chandran P (2011). Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International, 2011: 941810

    Google Scholar 

  • Deng S, Ke T, Li L, Cai S, Zhou Y, Liu Y, Guo L, Chen L, Zhang D (2018). Impacts of environmental factors on the whole microbial communities in the rhizosphere of a metal-tolerant plant: Elsholtzia haichowensis Sun. Environmental Pollution, 237: 1088–1097

    CAS  Google Scholar 

  • Ehrlich H L, Newman D K, Kappler A (2015) Ehrlich’s Geomicrobiology. Boca Raton: CRC Press

    Google Scholar 

  • Ekperusi O A, Aigbodion, F I (2015) Bioremediation of petroleum hydrocarbons from crude oil-contaminated soil with the earthworm: Hyperiodrilus africanus. 3 Biotech, 5(6), 957–965

    CAS  Google Scholar 

  • Elumalai P, Parthipan P, Karthikeyan O P, Rajasekar A (2017) Enzymemediated biodegradation of long-chain n-alkanes (C32 and C40) by thermophilic bacteria. 3 Biotech, 7, 116–126

    Google Scholar 

  • Feng K, Zhang Z, Cai W, Liu W, Xu M, Yin H, Wang A, He Z, Deng Y (2017). Biodiversity and species competition regulate the resilience of microbial biofilm community. Molecular Ecology, 26(21): 6170–6182

    Google Scholar 

  • Feng L, Wang W, Cheng J, Ren Y, Zhao G, Gao C, Tang Y, Liu X, Han W, Peng X, Liu R, Wang L (2007). Genome and proteome of longchain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proceedings of the National Academy of Sciences of the United States of America, 104 (13): 5602–5607

    CAS  Google Scholar 

  • Genovese M, Crisafi F, Denaro R, Cappello S, Russo D, Calogero R, Santisi S, Catalfamo M, Modica A, Smedile F, Genovese L, Golyshin P N, Giuliano L, Yakimov M M (2014). Effective bioremediation strategy for rapid in situ cleanup of anoxic marine sediments in mesocosm oil spill simulation. Frontiers in Microbiology, 5: 162

    Google Scholar 

  • Haritash A K, Kaushik C P (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 169(1-3): 1–15

    CAS  Google Scholar 

  • Hasanuzzaman M, Ueno A, Ito H, Ito Y, Yamamoto Y, Yumoto I, Okuyama H (2007). Degradation of long-chain n-alkanes (C-36 and C-40) by Pseudomonas aeruginosa strain WatG. International Biodeterioration & Biodegradation, 59(1): 40–43

    CAS  Google Scholar 

  • Hasinger M, Scherr K E, Lundaa T, Bräuer L, Zach C, Loibner A P (2012). Changes in iso- and n-alkane distribution during biodegradation of crude oil under nitrate and sulphate reducing conditions. Journal of Biotechnology, 157(4): 490–498

    CAS  Google Scholar 

  • Hassanshahian M, Ahmadinejad M, Tebyanian H, Kariminik A (2013). Isolation and characterization of alkane degrading bacteria from petroleum reservoir waste water in Iran (Kerman and Tehran provenances). Marine Pollution Bulletin, 73(1): 300–305

    CAS  Google Scholar 

  • Hassanshahian M, Zeynalipour M S, Musa F H (2014). Isolation and characterization of crude oil degrading bacteria from the Persian Gulf (Khorramshahr provenance). Marine Pollution Bulletin, 82(1-2): 39–44

    CAS  Google Scholar 

  • Herlemann D P R, Labrenz M, Jürgens K, Bertilsson S, Waniek J J, Andersson A F (2011). Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME Journal, 5(10): 1571–1579

    CAS  Google Scholar 

  • Jia J L, Zong S, Hu L, Shi S H, Zhai X B,Wang B B, Li G H, Zhang D Y (2017). The dynamic change of microbial communities in crude oilcontaminated soils from oil fields in China. Soil & Sediment Contamination, 26(2): 171–183

    CAS  Google Scholar 

  • Jiang B, Li G, Xing Y, Zhang D, Jia J, Cui Z, Luan X, Tang H (2017). A whole-cell bioreporter assay for quantitative genotoxicity evaluation of environmental samples. Chemosphere, 184: 384–392

    CAS  Google Scholar 

  • Jiménez N, Viñas M, Bayona J M, Albaiges J, Solanas A M (2007). The Prestige oil spill: Bacterial community dynamics during a field biostimulation assay. Applied Microbiology and Biotechnology, 77 (4): 935–945

    Google Scholar 

  • Jiménez N, Viñas M, Guiu-Aragonés C, Bayona J M, Albaigés J, Solanas A M (2011). Polyphasic approach for assessing changes in an autochthonous marine bacterial community in the presence of Prestige fuel oil and its biodegradation potential. Applied Microbiology and Biotechnology, 91(3): 823–834

    Google Scholar 

  • Jurelevicius D, Alvarez V M, Peixoto R, Rosado A S, Seldin L (2013). The use of a combination of alkB primers to better characterize the distribution of alkane-degrading bacteria. PLoS One, 8(6): e66565

    CAS  Google Scholar 

  • Kilbane J J 2nd (2006). Microbial biocatalyst developments to upgrade fossil fuels. Current Opinion in Biotechnology, 17(3): 305–314

    CAS  Google Scholar 

  • King C E, King G M (2014). Description of Thermogemmatispora carboxidivorans sp. nov., a carbon-monoxide-oxidizing member of the class Ktedonobacteria isolated from a geothermally heated biofilm, and analysis of carbon monoxide oxidation by members of the class Ktedonobacteria. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 4): 1244–1251

    CAS  Google Scholar 

  • Kulichevskaya I S, Ivanova A A, Baulina O I, RijpstraW I C, Sinninghe Damsté J S, Dedysh S N (2017). Fimbriiglobus ruber gen. nov., sp. nov., a Gemmata-like planctomycete from Sphagnum peat bog and the proposal of Gemmataceae fam. nov. International Journal of Systematic and Evolutionary Microbiology, 67(2): 218–224

    CAS  Google Scholar 

  • Li H, BoufadelMC (2010). Long-term persistence of oil from the Exxon Valdez spill in two-layer beaches. Nature Geoscience, 3(2): 96–99

    CAS  Google Scholar 

  • Liu C, Wang W, Wu Y, Zhou Z, Lai Q, Shao Z (2011). Multiple alkane hydroxylase systems in a marine alkane degrader, Alcanivorax dieselolei B-5. Environmental Microbiology, 13(5): 1168–1178

    CAS  Google Scholar 

  • Liu Q, Tang J, Liu X, Song B, Zhen M, Ashbolt N J (2017). Response of microbial community and catabolic genes to simulated petroleum hydrocarbon spills in soils/sediments from different geographic locations. Journal of Applied Microbiology, 123(4): 875–885

    CAS  Google Scholar 

  • Liu X, Chen Y, Zhang X, Jiang X, Wu S, Shen J, Sun X, Li J, Lu L, Wang L (2015). Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater. Journal of Hazardous Materials, 295: 153–160

    CAS  Google Scholar 

  • Lo Piccolo L, De Pasquale C, Fodale R, Puglia A M, Quatrini P (2011). Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes. Applied and Environmental Microbiology, 77(4): 1204–1213

    CAS  Google Scholar 

  • Lu Z, Zeng F, Xue N, Li F (2012). Occurrence and distribution of polycyclic aromatic hydrocarbons in organo-mineral particles of alluvial sandy soil profiles at a petroleum-contaminated site. Science of the Total Environment, 433: 50–57

    CAS  Google Scholar 

  • Lueders T (2017). The ecology of anaerobic degraders of BTEX hydrocarbons in aquifers. FEMS Microbiology Ecology, 93(1): 1–13

    CAS  Google Scholar 

  • Magoc T, Salzberg S L (2011). FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics (Oxford, England), 27(21): 2957–2963

    CAS  Google Scholar 

  • Masy T, Demaneche S, Tromme O, Thonart P, Jacques P, Hiligsmann S, Vogel TM (2016). Hydrocarbon biostimulation and bioaugmentation in organic carbon and clay-rich soils. Soil Biology & Biochemistry, 99: 66–74

    CAS  Google Scholar 

  • Mehdi H, Giti E (2008). Investigation of alkane biodegradation using the microtiter plate method and correlation between biofilm formation, biosurfactant production and crude oil biodegradation. International Biodeterioration & Biodegradation, 62(2): 170–178

    CAS  Google Scholar 

  • Ni N, Song Y, Shi R, Liu Z, Bian Y, Wang F, Yang X, Gu C, Jiang X (2017). Biochar reduces the bioaccumulation of PAHs from soil to carrot (Daucus carota L.) in the rhizosphere: A mechanism study. Science of the Total Environment, 601-602: 1015–1023

    CAS  Google Scholar 

  • Pacwa-Plociniczak M, Plaza G A, Piotrowska-Seget Z (2016). Monitoring the changes in a bacterial community in petroleumpolluted soil bioaugmented with hydrocarbon-degrading strains. Applied Soil Ecology, 105: 76–85

    Google Scholar 

  • Pagé A P, Yergeau É, Greer C W (2015). Salix purpurea stimulates the expression of specific bacterial xenobiotic degradation genes in a soil contaminated with hydrocarbons. PLoS One, 10(7): e0132062

    Google Scholar 

  • Powell S M, Bowman J P, Ferguson S H, Snape I (2010). The importance of soil characteristics to the structure of alkane-degrading bacterial communities on sub-Antarctic Macquarie Island. Soil Biology & Biochemistry, 42(11): 2012–2021

    CAS  Google Scholar 

  • Powell S M, Ferguson S H, Bowman J P, Snape I (2006). Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microbial Ecology, 52(3): 523–532

    CAS  Google Scholar 

  • Ravin, N V, Rakitin A L, Ivanova A A, Beletsky AV, Kulichevskaya I S, Mardanov A V, Dedysh S N (2018) Genome analysis of Fimbriiglobus ruber SP5T, a planctomycete with confirmed chitinolytic capability. Applied and Environmental Microbiology, 84(7): e02645–17

    Google Scholar 

  • Ribeiro H, Mucha A P, Almeida C M R, Bordalo A A (2013). Bacterial community response to petroleum contamination and nutrient addition in sediments from a temperate salt marsh. Science of the Total Environment, 458-460: 568–576

    CAS  Google Scholar 

  • Sangwan P, Chen X, Hugenholtz P, Janssen P H (2004). Chthoniobacter flavus gen. nov., sp. nov., the first pure-culture representative of subdivision two, Spartobacteria classis nov., of the phylum Verrucomicrobia. Applied and Environmental Microbiology, 70 (10): 5875–5881

    CAS  Google Scholar 

  • Scherr K E, Lundaa T, Klose V, Bochmann G, Loibner A P (2012). Changes in bacterial communities from anaerobic digesters during petroleum hydrocarbon degradation. Journal of Biotechnology, 157 (4): 564–572

    CAS  Google Scholar 

  • Setti L, Lanzarini G, Pifferi P G, Spagna G (1993). Further research into the aerobic degradation of N-Alkanes in a heavy oil by a pure culture of a Pseudomonas sp. Chemosphere, 26(6): 1151–1157

    CAS  Google Scholar 

  • Silva E J, Rocha e Silva N M, Rufino R D, Luna J M, Silva R O, Sarubbo L A (2014). Characterization of a biosurfactant produced by Pseudomonas cepacia CCT6659 in the presence of industrial wastes and its application in the biodegradation of hydrophobic compounds in soil. Colloids and Surfaces. B, Biointerfaces, 117: 36–41

    CAS  Google Scholar 

  • Smits T H M, Witholt B, van Beilen J B (2003). Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa. Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology, 84(3): 193–200

    CAS  Google Scholar 

  • Soman C, Li D,WanderMM, Kent A D (2017). Long-term fertilizer and crop-rotation treatments differentially affect soil bacterial community structure. Plant and Soil, 413(1–2): 145–159

    CAS  Google Scholar 

  • Sun Y, Lu S, Zhao X, Ding A, Wang L (2017). Long-term oil pollution and in situ microbial response of groundwater in Northwest China. Archives of Environmental Contamination and Toxicology, 72(4): 519–529

    CAS  Google Scholar 

  • Throne-Holst M, Markussen S, Winnberg A, Ellingsen T E, Kotlar H K, Zotchev S B (2006). Utilization of n-alkanes by a newly isolated strain of Acinetobacter venetianus: The role of two alkB-type alkane hydroxylases. Applied Microbiology and Biotechnology, 72(2): 353–360

    CAS  Google Scholar 

  • Tomasek A, Staley C, Wang P, Kaiser T, Lurndahl N, Kozarek J L, Hondzo M, Sadowsky M J (2017). Increased denitrification rates associated with shifts in prokaryotic community composition caused by varying hydrologic connectivity. Frontiers in Microbiology, 8: 2304

    Google Scholar 

  • Tourova T P, Sokolova D S, Semenova E M, Shumkova E S, Korshunova A V, Babich T L, Poltaraus A B, Nazina T N (2016). Detection of n-alkane biodegradation genes alkB and ladA in thermophilic hydrocarbon-oxidizing bacteria of the genera Aeribacillus and Geobacillus. Microbiology, 85(6): 693–707

    CAS  Google Scholar 

  • Trevathan-Tackett S M, Seymour J R, Nielsen D A, Macreadie P I, Jeffries T C, Sanderman J, Baldock J, Howes J M, Steven A D L, Ralph P J (2017). Sediment anoxia limits microbial-driven seagrass carbon remineralization under warming conditions. FEMS Microbiology Ecology, 93(6): fix033

    Google Scholar 

  • Vasileiadis S, Puglisi E, Arena M, Cappa F, Cocconcelli P S, Trevisan M (2012). Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies. PLoS One, 7(8): e42671

    CAS  Google Scholar 

  • Wang X, Zhao X, Li H, Jia J, Liu Y, Ejenavi O, Ding A, Sun Y, Zhang D (2016). Separating and characterizing functional alkane degraders from crude-oil-contaminated sites via magnetic nanoparticlemediated isolation. Research in Microbiology, 167(9-10): 731–744

    CAS  Google Scholar 

  • Wang Y, Nie M, Wan Y, Tian X, Nie H, Zi J, Ma X (2017). Functional characterization of two alkane hydroxylases in a versatile Pseudomonas aeruginosa strain NY3. Annals of Microbiology, 67(7): 459–468

    CAS  Google Scholar 

  • Wentzel A, Ellingsen T E, Kotlar H K, Zotchev S B, Throne-Holst M (2007). Bacterial metabolism of long-chain n-alkanes. Applied Microbiology and Biotechnology, 76(6): 1209–1221

    CAS  Google Scholar 

  • Wu R R, Dang Z, Yi X Y, Yang C, Lu G N, Guo C L, Liu C Q (2011). The effects of nutrient amendment on biodegradation and cytochrome P450 activity of an n-alkane degrading strain of Burkholderia sp. GS3C. Journal of Hazardous Materials, 186(2-3): 978–983

    CAS  Google Scholar 

  • Zengler K, Heider J, Rossello-Mora R, Widdel F (1999). Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Archives of Microbiology, 172(4): 204–212

    CAS  Google Scholar 

  • Zhang D, Berry J P, Zhu D, Wang Y, Chen Y, Jiang B, Huang S, Langford H, Li G, Davison P A, Xu J, Aries E, Huang W E (2015). Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community. ISME Journal, 9(3): 603–614

    CAS  Google Scholar 

  • Zhang D, Ding A, Cui S, Hu C, Thornton S F, Dou J, Sun Y, HuangWE (2013). Whole cell bioreporter application for rapid detection and evaluation of crude oil spill in seawater caused by Dalian oil tank explosion. Water Research, 47(3): 1191–1200

    CAS  Google Scholar 

  • Zhang S, Yao H, Lu Y, Yu X,Wang J, Sun S, Liu M, Li D, Li Y F, Zhang D (2017). Uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by maize from soil irrigated with wastewater. Scientific Reports, 7(1): 12165

    Google Scholar 

  • Zhao Q, Li R, Ji M, Ren Z J (2016). Organic content influences sediment microbial fuel cell performance and community structure. Bioresource Technology, 220: 549–556

    CAS  Google Scholar 

  • Zhu L, Wang Y, Jiang L, Lai L, Ding J, Liu N, Li J, Xiao N, Zheng Y, Rimmington G M (2015). Effects of residual hydrocarbons on the reed community after 10 years of oil extraction and the effectiveness of different biological indicators for the long-term risk assessments. Ecological Indicators, 48: 235–243

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Scientific Foundation of China (No. 41672227).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aizhong Ding or Dayi Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Ding, A., Sun, Y. et al. Impacts of n-alkane concentration on soil bacterial community structure and alkane monooxygenase genes abundance during bioremediation processes. Front. Environ. Sci. Eng. 12, 3 (2018). https://doi.org/10.1007/s11783-018-1064-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-018-1064-5

Keywords

Navigation