PVDF ultrafiltration membranes of controlled performance via blending PVDF-g-PEGMA copolymer synthesized under different reaction times

  • Shuai Wang
  • Tong Li
  • Chen Chen
  • Baicang LiuEmail author
  • John C. Crittenden
Research Article


Polyvinylidene fluoride grafted with poly(ethylene glycol) methyl ether methacrylate (PVDF-g-PEGMA) was synthesized using atomic transfer radical polymerization (ATRP) at different reaction times (9 h, 19 h, and 29 h). The corresponding conversion rates were 10%, 20% and 30%, respectively. PVDF was blended with the copolymer mixture containing PVDF-g-PEGMA, solvent and residual PEGMA under different reaction times. In this study, we explored the effect of the copolymer mixture additives with different synthesis times on cast membrane performance. Increasing the reaction time of PVDF-g-PEGMA causes more PVDF-g-PEGMA and less residual PEGMA to be found in the casting solution. Incremental PVDF-g-PEGMA can dramatically increase the viscosity of the casting solution. An overly high viscosity led to a delayed phase inversion, thus hindering PEGMA segments in PVDF-g-PEGMA from migrating to the membrane surface. However, more residual PEGMA contributed to helping more PEGMA segments migrate to the membrane surface. The pure water fluxes of the blended membrane with reaction times of 9 h, 19 h, and 29 h are 5445 L∙m–2∙h–1, 1068 L∙m–2∙h–1 and 1179 L∙m–2∙h–1, respectively, at 0.07 MPa. Delayed phase inversion can form smaller surface pore size distributions, thus decreasing the water flux for the membranes with PVDF-g-PEGMA at 19 h and 29 h. Therefore, we can control the membrane pore size distribution by decreasing the reaction time of PVDF-g-PEGMA to obtain a better flux performance. The membrane with PVDF-g-PEGMA at 19 h exhibits the best foulant rejection and cleaning recovery due to its narrow pore size distribution and high surface oxygen content.


Polyvinylidene fluoride ultrafiltration membrane Amphiphilic copolymer Blended modification High flux Atomic transfer radical polymerization 



We are extremely grateful to the National Natural Science Foundation of China (Nos: 51278317 and 51678377), Key Projects in the Science & Technology Program of Hainan Province (No: zdkj2016022), the Applied Basic Research of Sichuan Province (No: 2017JY0238), and the Litree Purifying Technology Co., Ltd (No: 16H0155).


  1. 1.
    Kang G D, Cao Y M. Application and modification of poly (vinylidene fluoride) (PVDF) membranes–A review. Journal of Membrane Science, 2014, 463: 145–165CrossRefGoogle Scholar
  2. 2.
    Liu F, Hashim N A, Liu Y T, Abed M R M, Li K. Progress in the production and modification of PVDF membranes. Journal of Membrane Science, 2011, 375(1–2): 1–27CrossRefGoogle Scholar
  3. 3.
    Moghimifar V, Raisi A, Aroujalian A. Surface modification of polyethersulfone ultrafiltration membranes by corona plasma-assisted coating TiO2 nanoparticles. Journal of Membrane Science, 2014, 461: 69–80CrossRefGoogle Scholar
  4. 4.
    Ni L, Meng J Q, Li X G, Zhang Y F. TFC RO membrane for chlorine resistance and antifouling performance improvement. Journal of Membrane Science, 2014, 451: 205–215CrossRefGoogle Scholar
  5. 5.
    Zhao X T, Su Y L, Chen W J, Peng J M, Jiang Z Y. Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property. Journal of Membrane Science, 2012, 415–416: 824–834CrossRefGoogle Scholar
  6. 6.
    Ren P F, Fang Y, Wan L S, Ye X Y, Xu Z K. Surface modification of polypropylene microfiltration membrane by grafting poly(sulfobetaine methacrylate) and poly(ethylene glycol): oxidative stability and antifouling capability. Journal of Membrane Science, 2015, 492: 249–256CrossRefGoogle Scholar
  7. 7.
    Chen Y Q, Wei M J, Wang Y. Upgrading polysulfone ultrafiltration membranes by blending with amphiphilic block copolymers: beyond surface segregation. Journal of Membrane Science, 2016, 505: 53–60CrossRefGoogle Scholar
  8. 8.
    Liu Y N, Su Y L, Zhao X T, Li Y F, Zhang R N, Jiang Z Y. Improved antifouling properties of polyethersulfone membrane by blending the amphiphilic surface modifier with crosslinked hydrophobic segments. Journal of Membrane Science, 2015, 486: 195–206CrossRefGoogle Scholar
  9. 9.
    Rajasekhar T, Trinadh M, Veera Babu P, Sainath A V S, Reddy A V R. Oil–water emulsion separation using ultrafiltration membranes based on novel blends of poly(vinylidene fluoride) and amphiphilic tri-block copolymer containing carboxylic acid functional group. Journal of Membrane Science, 2015, 481: 82–93CrossRefGoogle Scholar
  10. 10.
    Chen C, Tang L, Liu B C, Zhang X, Crittenden J, Chen K L, Chen Y S. Forming mechanism study of unique pillar-like and defect-free PVDF ultrafiltration membranes with high flux. Journal of Membrane Science, 2015, 487: 1–11CrossRefGoogle Scholar
  11. 11.
    Liu B C, Chen C, Li T, Crittenden J, Chen Y S. High performance ultrafiltration membrane composed of PVDF blended with its derivative copolymer PVDF-g-PEGMA. Journal of Membrane Science, 2013, 445: 66–75CrossRefGoogle Scholar
  12. 12.
    Ochoa N. Effect of hydrophilicity on fouling of an emulsified oil wastewater with PVDF/PMMA membranes. Journal of Membrane Science, 2003, 226(1–2): 203–211CrossRefGoogle Scholar
  13. 13.
    Yuan Z, Dan L X. Porous PVDF/TPU blends asymmetric hollow fiber membranes prepared with the use of hydrophilic additive PVP (K30). Desalination, 2008, 223(1–3): 438–447CrossRefGoogle Scholar
  14. 14.
    Liu B C, Chen C, Zhao P J, Li T, Liu C H, Wang Q Y, Chen Y S, Crittenden J. Thin-film composite forward osmosis membranes with substrate layer composed of polysulfone blended with PEG or polysulfone grafted PEG methyl ether methacrylate. Frontiers of Chemical Science and Engineering, 2016, 10(4): 562–574CrossRefGoogle Scholar
  15. 15.
    Xu Z W, Wu T F, Shi J, Teng K Y, Wang W, Ma M J, Li J, Qian X M, Li C Y, Fan J T. Photocatalytic antifouling PVDF ultrafiltration membranes based on synergy of graphene oxide and TiO2 for water treatment. Journal of Membrane Science, 2016, 520: 281–293CrossRefGoogle Scholar
  16. 16.
    Liang S, Gao P, Gao X Q, Xiao K, Huang X. Improved blending strategy for membrane modification by virtue of surface segregation using surface-tailored amphiphilic nanoparticles. Frontiers of Environmental Science & Engineering, 2016, 10 (6):113–121 doi:10.1007/s11783-016-0875-5CrossRefGoogle Scholar
  17. 17.
    Zhao Y H, Qian Y L, Zhu B K, Xu Y Y. Modification of porous poly (vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process. Journal of Membrane Science, 2008, 310(1–2): 567–576CrossRefGoogle Scholar
  18. 18.
    Minehara H, Dan K, Ito Y, Takabatake H, Henmi M. Quantitative evaluation of fouling resistance of PVDF/PMMA-g-PEO polymer blend membranes for membrane bioreactor. Journal of Membrane Science, 2014, 466: 211–219CrossRefGoogle Scholar
  19. 19.
    Ma W Z, Rajabzadeh S, Shaikh A R, Kakihana Y, Sun Y C, Matsuyama H. Effect of type of poly(ethylene glycol) (PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly (vinylidene fluoride) (PVDF) blend membranes. Journal of Membrane Science, 2016, 514: 429–439CrossRefGoogle Scholar
  20. 20.
    Venault A, Liu Y H, Wu J R, Yang H S, Chang Y, Lai J Y, Aimar P. Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly (ethylene glycol) methacrylate blend. Journal of Membrane Science, 2014, 450: 340–350CrossRefGoogle Scholar
  21. 21.
    Venault A, Wu J R, Chang Y, Aimar P. Fabricating hemocompatible bi-continuous PE Gylated PVDF membranes via vapor-induced phase inversion. Journal of Membrane Science, 2014, 470: 18–29CrossRefGoogle Scholar
  22. 22.
    Carretier S, Chen L A, Venault A, Yang Z R, Aimar P, Chang Y. Design of PVDF/PEGMA-b-PS-b-PEGMA membranes by VIPS for improved biofouling mitigation. Journal of Membrane Science, 2016, 510: 355–369CrossRefGoogle Scholar
  23. 23.
    Moghareh Abed M R, Kumbharkar S C, Groth A M, Li K. Economical production of PVDF-g-POEM for use as a blend in preparation of PVDF based hydrophilic hollow fibre membranes. Separation and Purification Technology, 2013, 106: 47–55CrossRefGoogle Scholar
  24. 24.
    Hashim N A, Liu F, Li K. A simplified method for preparation of hydrophilic PVDF membranes from an amphiphilic graft copolymer. Journal of Membrane Science, 2009, 345(1–2): 134–141CrossRefGoogle Scholar
  25. 25.
    Hester J F, Banerjee P, Won Y Y, Akthakul A, Acar M H, Mayes A M. ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives. Macromolecules, 2002, 35(20): 7652–7661CrossRefGoogle Scholar
  26. 26.
    Wang J S, Matyjaszewski K. Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society, 1995, 117(20): 5614–5615Google Scholar
  27. 27.
    Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris-( triphenylphosphine)ruthenium(ii)/methylaluminum Bis(2,6- di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules, 1995, 28(5): 1721–1723CrossRefGoogle Scholar
  28. 28.
    Katsoufidou K, Yiantsios S G, Karabelas A J. An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery. Desalination, 2008, 220(1–3): 214–227CrossRefGoogle Scholar
  29. 29.
    Ye Y, Chen V, Fane A G. Modeling long-term subcritical filtration of model EPS solutions. Desalination, 2006, 191(1–3): 318–327CrossRefGoogle Scholar
  30. 30.
    Kim H C, Dempsey B A. Membrane fouling due to alginate, SMP, EfOM, humic acid, and NOM. Journal of Membrane Science, 2013, 428: 190–197CrossRefGoogle Scholar
  31. 31.
    Listiarini K, Chun W, Sun D D, Leckie J O. Fouling mechanism and resistance analyses of systems containing sodium alginate, calcium, alum and their combination in dead-end fouling of nanofiltration membranes. Journal of Membrane Science, 2009, 344(1–2): 244–251CrossRefGoogle Scholar
  32. 32.
    Katsoufidou K, Yiantsios S G, Karabelas A J. Experimental study of ultrafiltration membrane fouling by sodium alginate and flux recovery by backwashing. Journal of Membrane Science, 2007, 300(1–2): 137–146CrossRefGoogle Scholar
  33. 33.
    Ang W S, Lee S, Elimelech M. Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes. Journal of Membrane Science, 2006, 272(1–2): 198–210CrossRefGoogle Scholar
  34. 34.
    Awanis Hashim N, Liu F, Moghareh Abed M R, Li K. Chemistry in spinning solutions: Surface modification of PVDF membranes during phase inversion. Journal of Membrane Science, 2012, 415–416: 399–411CrossRefGoogle Scholar
  35. 35.
    Peinemann K V, Abetz V, Simon P F W. Asymmetric superstructure formed in a block copolymer via phase separation. Nature Materials, 2007, 6(12): 992–996CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Shuai Wang
    • 1
    • 2
  • Tong Li
    • 3
  • Chen Chen
    • 4
  • Baicang Liu
    • 1
    • 2
    Email author
  • John C. Crittenden
    • 5
  1. 1.College of Architecture and EnvironmentSichuan UniversityChengduChina
  2. 2.Institute of New Energy and Low Carbon TechnologySichuan UniversityChengduChina
  3. 3.Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  4. 4.Litree Purifying Technology Co., LtdHaikouChina
  5. 5.Brook Byers Institute for Sustainable Systems, School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations