Skip to main content
Log in

Greenhouse gas emissions from different pig manure management techniques: a critical analysis

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Manure management is the primary source of greenhouse gas (GHG) emissions from pig farming, which in turn accounts for 18% of the total global GHG emissions from the livestock industry. In this review, GHG emissions (N2O and CH4 emissions in particular) from individual pig manure (PGM) management practices (European practises in particular) are systematically analyzed and discussed. These manure management practices include manure storage, land application, solid/liquid separation, anaerobic digestion, composting and aerobic wastewater treatment. The potential reduction in net GHG emissions by changing and optimising these techniques is assessed. This review also identifies key research gaps in the literature including the effect of straw covering of liquid PGM storages, the effect of solid/liquid separation, and the effect of dry anaerobic digestion on net GHG emissions from PGM management. In addition to identifying these research gaps, several recommendations including the need to standardize units used to report GHG emissions, to account for indirect N2O emissions, and to include a broader research scope by conducting detailed life cycle assessment are also discussed. Overall, anaerobic digestion and compositing to liquid and solid fractions are best PGM management practices with respect to their high GHG mitigation potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Philippe F X, Nicks B. Review on greenhouse gas emissions from pig houses: production of carbon dioxide, methane and nitrous oxide by animals and manure. Agriculture, Ecosystems & Environment, 2015, 199(0): 10–25

    Article  CAS  Google Scholar 

  2. World Livestock F A O. 2011–Livestock in Food Security. Rome 2011. Available online at http://www.fao.org/docrep/014/i2373e/i2373e.pdf (accessed January 18, 2017)

    Google Scholar 

  3. Pigs F A O. Available online at http://www.fao.org/ag/againfo/themes/en/pigs/home.html (accessed March 11, 2016)

  4. FAO. FAOSTAT 2013. Available online at http://faostat.fao.org/site/573/default.aspx#ancor(accessed September 7, 2016)

    Google Scholar 

  5. European Commission. EU Climate Action: Key targets for 2030. Available online at http://ec.europa.eu/clima/citizens/eu_en (accessed January 18, 2017)

    Google Scholar 

  6. Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J. Greenhouse gas mitigation in agriculture. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 2008, 363(1492): 789–813

    Article  CAS  Google Scholar 

  7. Monteny G J, Bannink A, Chadwick D. Greenhouse gas abatement strategies for animal husbandry. Agriculture, Ecosystems & Environment, 2006, 112(2–3): 163–170

    Article  CAS  Google Scholar 

  8. Xie S. Evaluation of Biogas Production from Anaerobic Digestion of Pig Manure and Grass Silage. Dissertation for Doctoral Degree. Galway: National University of Ireland, 2011

    Google Scholar 

  9. Amon T, Amon B, Kryvoruchko V, Zollitsch W, Mayer K, Gruber L. Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agriculture, Ecosystems & Environment, 2007, 118(1–4): 173–182

    Article  CAS  Google Scholar 

  10. Burton C H. The potential contribution of separation technologies to the management of livestock manure. Livestock Science, 2007, 112 (3): 208–216

    Article  Google Scholar 

  11. Burton C H, Turner C. Manure Management: Treatment Strategies for Sustainable Agriculture. Bedford, UK: Silsoe Institute Silsoe, 2003

    Google Scholar 

  12. McKenna G, Hyde T, Gibson M. Cross Compliance Workbook. Teagasc, Ireland: Teagasc 2013

    Google Scholar 

  13. Deng L, Li Y, Chen Z, Liu G, Yang H. Separation of swine slurry into different concentration fractions and its influence on biogas fermentation. Applied Energy, 2014, 114(0): 504–511

    Article  CAS  Google Scholar 

  14. Wnetrzak R, Kwapinski W, Peters K, Sommer S G, Jensen L S, Leahy J J. The influence of the pig manure separation system on the energy production potentials. Bioresource Technology, 2013, 136: 502–508

    Article  CAS  Google Scholar 

  15. Dinuccio E, Berg W, Balsari P. Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmospheric Environment, 2008, 42(10): 2448–2459

    Article  CAS  Google Scholar 

  16. Tait S, Tamis J, Edgerton B, Batstone D J. Anaerobic digestion of spent bedding from deep litter piggery housing. Bioresource Technology, 2009, 100(7): 2210–2218

    Article  CAS  Google Scholar 

  17. Chynoweth D, Wilkie A, Owens J. Anaerobic processing of piggery wastes: a review. In: ASAE Annual International Meeting, Orlando, Florida, USA, 12–16 July, 1998. Florida: American Society of Agricultural Engineers (ASAE), 1998

    Google Scholar 

  18. Myhre G, Shindell D, Bréon F, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J, Lee D, Mendoza B. Anthropogenic and Natural Radiative Forcing. In: Stocker T F, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M, eds. Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom & New York, NY, USA: Cambridge University Press, 2013, 714

    Google Scholar 

  19. Intergovernmental Panel on Climate Change. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Kangawa, Japan: IGES, 2006

    Google Scholar 

  20. Metcalf L, Eddy H P, Tchobanoglous G. Wastewater Engineering: Treatment, Disposal, and Reuse. NewYork: McGraw-Hill, 1972

    Google Scholar 

  21. Chadwick D, Sommer S, Thorman R, Fangueiro D, Cardenas L, Amon B, Misselbrook T. Manure management: Implications for greenhouse gas emissions. Animal Feed Science and Technology, 2011, 166–167: 514–531

    Article  Google Scholar 

  22. Montes F, Meinen R, Dell C, Rotz A, Hristov A N, Oh J, Waghorn G, Gerber P J, Henderson B, Makkar H P, Dijkstra J. Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: II. A review of manure management mitigation options. Journal of Animal Science, 2013, 91(11): 5070–5094

    Article  CAS  Google Scholar 

  23. Maag M, Vinther F P. Nitrous oxide emission by nitrification and denitrification in different soil types and at different soil moisture contents and temperatures. Applied Soil Ecology, 1996, 4(1): 5–14

    Article  Google Scholar 

  24. Husted S. Seasonal variation in methane emission from stored slurry and solid manures. Journal of Environmental Quality, 1994, 23(3): 585–592

    Article  CAS  Google Scholar 

  25. Laguee C, Gaudet E, Agnew J, Fonstad T. Greenhouse gas emissions from liquid swine manure storage facilities in Saskatchewan. Transactions of the ASAE. American Society of Agricultural Engineers, 2005, 48(6): 2289–2296

    Article  Google Scholar 

  26. Park K H, Thompson A G, Marinier M, Clark K, Wagner-Riddle C. Greenhouse gas emissions from stored liquid swine manure in a cold climate. Atmospheric Environment, 2006, 40(4): 618–627

    Article  CAS  Google Scholar 

  27. Loyon L, Guiziou F, Beline F, Peu P. Gaseous emissions (NH3, N2O, CH4 and CO2) from the aerobic treatment of piggery slurry—Comparison with a conventional storage system. Biosystems Engineering, 2007, 97(4): 472–480

    Article  Google Scholar 

  28. Petersen S O, Dorno N, Lindholst S, Feilberg A, Eriksen J. Emissions of CH4, N2O, NH3 and odorants from pig slurry during winter and summer storage. Nutrient Cycling in Agroecosystems, 2013, 95(1): 103–113

    Article  CAS  Google Scholar 

  29. Sommer S G, Petersen S O, Sørensen P, Poulsen H D, Møller H B. Methane and carbon dioxide emissions and nitrogen turnover during liquid manure storage. Nutrient Cycling in Agroecosystems, 2007, 78(1): 27–36

    Article  CAS  Google Scholar 

  30. Elsgaard L, Olsen A B, Petersen S O. Temperature response of methane production in liquid manures and co-digestates. Science of the Total Environment, 2016, 539: 78–84

    Article  CAS  Google Scholar 

  31. Sommer S G, Petersen S O, Møller H B. Algorithms for calculating methane and nitrous oxide emissions from manure management. Nutrient Cycling in Agroecosystems, 2004, 69(2): 143–154

    Article  CAS  Google Scholar 

  32. Hansen M N, Henriksen K, Sommer S G. Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: effects of covering. Atmospheric Environment, 2006, 40(22): 4172–4181

    Article  CAS  Google Scholar 

  33. Bobbink R, Hornung M, Roelofs J G M. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 1998, 86(5): 717–738

    Article  CAS  Google Scholar 

  34. Rodhe L K K, Abubaker J, Ascue J, Pell M, Nordberg Å. Greenhouse gas emissions from pig slurry during storage and after field application in northern European conditions. Biosystems Engineering, 2012, 113(4): 379–394

    Article  Google Scholar 

  35. VanderZaag A, Gordon R, Jamieson R, Burton D, Stratton G, Gas emissions from straw covered liquid dairy manure during summer storage and autumn agitation. Transactions of the ASABE, 2009, 52 (2): 599–608

    Article  CAS  Google Scholar 

  36. Petersen S O, Amon B, Gattinger A. Methane oxidation in slurry storage surface crusts. Journal of Environmental Quality, 2005, 34 (2): 455–461

    CAS  Google Scholar 

  37. McCrory D F, Hobbs P J. Additives to reduce ammonia and odor emissions from livestock wastes: a review. Journal of Environmental Quality, 2001, 30(2): 345–355

    Article  CAS  Google Scholar 

  38. Cocolo G, Hjorth M, Zarebska A, Provolo G. Effect of acidification on solid–liquid separation of pig slurry. Biosystems Engineering, 2016, 143: 20–27

    Article  Google Scholar 

  39. Stevens R J, Laughlin R J, Frost J P. Effect of acidification with sulphuric acid on the volatilization of ammonia from cow and pig slurries. Journal of Agricultural Science, 1989, 113(03): 389–395

    Article  CAS  Google Scholar 

  40. Berg W, Brunsch R, Pazsiczki I. Greenhouse gas emissions from covered slurry compared with uncovered during storage. Agriculture, Ecosystems & Environment, 2006, 112(2–3): 129–134

    Article  CAS  Google Scholar 

  41. Fangueiro D, Hjorth M, Gioelli F. Acidification of animal slurry—A review. Journal of Environmental Management, 2015, 149: 46–56

    Article  CAS  Google Scholar 

  42. Gómez-Muñoz B, Case S D C, Jensen L S. Pig slurry acidification and separation techniques affect soil N and C turnover and N2O emissions from solid, liquid and biochar fractions. Journal of Environmental Management, 2016, 168: 236–244

    Article  Google Scholar 

  43. Brink C, Kroeze C, Klimont Z. Ammonia abatement and its impact on emissions of nitrous oxide and methane—Part 2: Application for Europe. Atmospheric Environment, 2001, 35(36): 6313–6325

    Article  CAS  Google Scholar 

  44. VanderZaag A, Gordon R, Jamieson R, Burton D, Stratton G. Effects of winter storage conditions and subsequent agitation on gaseous emissions from liquid dairy manure. Canadian Journal of Soil Science, 2010, 90(1): 229–239

    Article  CAS  Google Scholar 

  45. Chadwick D R, Pain B F. Methane fluxes following slurry applications to grassland soils: laboratory experiments. Agriculture, Ecosystems & Environment, 1997, 63(1): 51–60

    Article  Google Scholar 

  46. Van Groenigen J, Kasper G, Velthof G, van den Pol-van Dasselaar A, Kuikman P J. Nitrous oxide emissions from silage maize fields under different mineral nitrogen fertilizer and slurry applications. Plant and Soil, 2004, 263(1): 101–111

    Article  Google Scholar 

  47. Sherlock R R, Sommer S G, Khan R Z, Wood C W, Guertal E A, Freney J R, Dawson C O, Cameron K C. Ammonia, methane, and nitrous oxide emission from pig slurry applied to a pasture in New Zealand. Journal of Environmental Quality, 2002, 31(5): 1491–1501

    Article  CAS  Google Scholar 

  48. Zhong J, Wei Y, Wan H, Wu Y, Zheng J, Han S, Zheng B. Greenhouse gas emission from the total process of swine manure composting and land application of compost. Atmospheric Environment, 2013, 81: 348–355

    Article  CAS  Google Scholar 

  49. Amon B, Kryvoruchko V, Amon T, Zechmeister-Boltenstern S. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agriculture, Ecosystems & Environment, 2006, 112(2–3): 153–162

    Article  CAS  Google Scholar 

  50. Pelster D E, Chantigny M H, Rochette P, Angers D A, Rieux C, Vanasse A. Nitrous oxide emissions respond differently to mineral and organic nitrogen sources in contrasting soil types. Journal of Environmental Quality, 2012, 41(2): 427–435

    Article  CAS  Google Scholar 

  51. VanderZaag A C, Jayasundara S, Wagner-Riddle C. Strategies to mitigate nitrous oxide emissions from land applied manure. Animal Feed Science and Technology, 2011, 166–167: 464–479

    Article  Google Scholar 

  52. Minet E P, Jahangir M M R, Krol D J, Rochford N, Fenton O, Rooney D, Lanigan G, Forrestal P J, Breslin C, Richards K G. Amendment of cattle slurry with the nitrification inhibitor dicyandiamide during storage: A new effective and practical N2O mitigation measure for landspreading. Agriculture, Ecosystems & Environment, 2016, 215: 68–75

    Article  Google Scholar 

  53. McGeough K L, Watson C J, Müller C, Laughlin R J, Chadwick D R. Evidence that the efficacy of the nitrification inhibitor dicyandiamide (DCD) is affected by soil properties in UK soils. Soil Biology & Biochemistry, 2016, 94: 222–232

    Article  CAS  Google Scholar 

  54. Gilsanz C, Báez D, Misselbrook T H, Dhanoa M S, Cárdenas L M. Development of emission factors and efficiency of two nitrification inhibitors, DCD and DMPP. Agriculture, Ecosystems & Environment, 2016, 216: 1–8

    Article  CAS  Google Scholar 

  55. Bertora C, Alluvione F, Zavattaro L, van Groenigen JW, Velthof G, Grignani C. Pig slurry treatment modifies slurry composition, N2O, and CO2 emissions after soil incorporation. Soil Biology & Biochemistry, 2008, 40(8): 1999–2006

    Article  CAS  Google Scholar 

  56. Chadwick D R, Pain B F, Brookman S K E. Nitrous oxide and methane emissions following application of animal manures to grassland. Journal of Environmental Quality, 2000, 29(1): 277–287

    Article  CAS  Google Scholar 

  57. De Vries J W, Aarnink A J, Groot Koerkamp P W, De Boer I J. Life cycle assessment of segregating fattening pig urine and feces compared to conventional liquid manure management. Environmental Science & Technology, 2013, 47(3): 1589–1597

    Google Scholar 

  58. Meade G, Pierce K, O’Doherty J V, Mueller C, Lanigan G, McCabe T. Ammonia and nitrous oxide emissions following land application of high and low nitrogen pig manures to winter wheat at three growth stages. Agriculture, Ecosystems & Environment, 2011, 140 (1–2): 208–217

    Article  Google Scholar 

  59. Sistani K, Warren J, Lovanh N, Higgins S, Shearer S. Greenhouse gas emissions from swine effluent applied to soil by different methods. Soil Science Society of America Journal, 2010, 74(2): 429–435

    Article  CAS  Google Scholar 

  60. Thomsen I K, Pedersen A R, Nyord T, Petersen S O. Effects of slurry pre-treatment and application technique on short-term N2O emissions as determined by a new non-linear approach. Agriculture, Ecosystems & Environment, 2010, 136(3–4): 227–235

    Article  CAS  Google Scholar 

  61. Vallejo A, García-Torres L, Díez J, Arce A, López-Fernández S. Comparison of N losses (NO3 , N2O2, NO) from surface applied, injected or amended (DCD) pig slurry of an irrigated soil in a Mediterranean climate. Plant and Soil, 2005, 272(1–2): 313–325

    Article  CAS  Google Scholar 

  62. Velthof G L, Mosquera J. The impact of slurry application technique on nitrous oxide emission from agricultural soils. Agriculture, Ecosystems & Environment, 2011, 140(1–2): 298–308

    Article  CAS  Google Scholar 

  63. Velthof G, Kuikman P, Oenema O. Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biology and Fertility of Soils, 2003, 37(4): 221–230

    CAS  Google Scholar 

  64. Weslien P, Klemedtsson L, Svensson L, Galle B, Kasimir-Klemedtsson Å, Gustafsson A. Nitrogen losses following application of pig slurry to arable land. Soil Use and Management, 1998, 14 (4): 200–208

    Article  Google Scholar 

  65. Zhu K, Christel W, Bruun S, Jensen L S. The different effects of applying fresh, composted or charred manure on soil N2O emissions. Soil Biology & Biochemistry, 2014, 74(0): 61–69

    Article  CAS  Google Scholar 

  66. Lovanh N, Warren J, Sistani K. Determination of ammonia and greenhouse gas emissions from land application of swine slurry: a comparison of three application methods. Bioresource Technology, 2010, 101(6): 1662–1667

    Article  CAS  Google Scholar 

  67. Sommer S G, Sherlock R R, Khan R Z. Nitrous oxide and methane emissions from pig slurry amended soils. Soil Biology & Biochemistry, 1996, 28(10–11): 1541–1544

    Article  CAS  Google Scholar 

  68. Webb J, Pain B, Bittman S, Morgan J. The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response—A review. Agriculture, Ecosystems & Environment, 2010, 137(1–2): 39–46

    Article  Google Scholar 

  69. Bortone G. Integrated anaerobic/aerobic biological treatment for intensive swine production. Bioresource Technology, 2009, 100 (22): 5424–5430

    Article  CAS  Google Scholar 

  70. Møller H B, Lund S G, Sommer. Solid-liquid separation of livestock slurry: efficiency and cost. Bioresource Technology, 2000, 74(3): 223–229

    Article  Google Scholar 

  71. Nolan T, Troy SM, Gilkinson S, Frost P, Xie S, Zhan X, Harrington C, Healy M G, Lawlor P G. Economic analyses of pig manure treatment options in Ireland. Bioresource Technology, 2012, 105: 15–23

    Article  CAS  Google Scholar 

  72. Fangueiro D, Coutinho J, Chadwick D, Moreira N, Trindade H. Effect of cattle slurry separation on greenhouse gas and ammonia emissions during storage. Journal of Environmental Quality, 2008, 37(6): 2322–2331

    Article  CAS  Google Scholar 

  73. Bhandral R, Bittman S, Kowalenko G, Buckley K, Chantigny M H, Hunt D E, Bounaix F, Friesen A. Enhancing soil infiltration reduces gaseous emissions and improves N uptake from applied dairy slurry. Journal of Environmental Quality, 2009, 38(4): 1372–1382

    Article  CAS  Google Scholar 

  74. Amon B, Kryvoruchko V, Moitzi G, Amon T. Greenhouse gas and ammonia emission abatement by slurry treatment. In: International Congress Series: Greenhouse Gases and Animal Agriculture: An Update. Proceedings of the 2nd International Conference on Greenhouse Gases and Animal Agriculture, held in Zurich, Switzerland between 20 and 24 September 2005. Zurich, Switzerland: Elsevier, 2006, 1293: 295–298

    Google Scholar 

  75. Pereira J, Fangueiro D, Chadwick D R, Misselbrook T H, Coutinho J, Trindade H. Effect of cattle slurry pre-treatment by separation and addition of nitrification inhibitors on gaseous emissions and N dynamics: a laboratory study. Chemosphere, 2010, 79(6): 620–627

    Article  CAS  Google Scholar 

  76. Fangueiro D, Senbayran M, Trindade H, Chadwick D. Cattle slurry treatment by screw press separation and chemically enhanced settling: effect on greenhouse gas emissions after land spreading and grass yield. Bioresource Technology, 2008, 99(15): 7132–7142

    Article  CAS  Google Scholar 

  77. Cantrell K B, Ducey T, Ro K S, Hunt P G. Livestock waste-tobioenergy generation opportunities. Bioresource Technology, 2008, 99(17): 7941–7953

    Article  CAS  Google Scholar 

  78. Kaparaju P, Rintala J. Mitigation of greenhouse gas emissions by adopting anaerobic digestion technology on dairy, sow and pig farms in Finland. Renewable Energy, 2011, 36(1): 31–41

    Article  CAS  Google Scholar 

  79. Prapaspongsa T, Poulsen T G, Hansen J A, Christensen P. Energy production, nutrient recovery and greenhouse gas emission potentials from integrated pig manure management systems. Waste Management & Research, 2010, 28(5): 411–422

    Article  CAS  Google Scholar 

  80. Maraseni T N, Maroulis J. Piggery: from environmental pollution to a climate change solution. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 2008, 43(4): 358–363

    Article  CAS  Google Scholar 

  81. De Vries J W, Vinken T M, Hamelin L, De Boer I J. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy—A life cycle perspective. Bioresource Technology, 2012, 125: 239–248

    Article  Google Scholar 

  82. Hansen K H, Angelidaki I, Ahring B K. Anaerobic digestion of swine manure: inhibition by ammonia. Water Research, 1998, 32(1): 5–12

    Article  CAS  Google Scholar 

  83. Wang Y, Dong H, Zhu Z, Li L, Zhou T, Jiang B, Xin H. CH4, NH3, N2O and NO emissions from stored biogas digester effluent of pig manure at different temperatures. Agriculture, Ecosystems & Environment, 2016, 217: 1–12

    Article  CAS  Google Scholar 

  84. Möller K, Müller T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 2012, 12(3): 242–257

    Article  Google Scholar 

  85. Flesch T K, Desjardins R L, Worth D. Fugitive methane emissions from an agricultural biodigester. Biomass and Bioenergy, 2011, 35 (9): 3927–3935

    Article  CAS  Google Scholar 

  86. Liebetrau J, Clemens J, Cuhls C, Hafermann C, Friehe J, Weiland P, Daniel-Gromke J. Methane emissions from biogas-producing facilities within the agricultural sector. Engineering in Life Sciences, 2010, 10(6): 595–599

    Article  CAS  Google Scholar 

  87. Jiang T, Frank S, Li G. Effect of turning and covering on greenhouse gas and ammonia emissions during the winter composting. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(10): 212–217

    Google Scholar 

  88. Thompson A G, Wagner-Riddle C, Fleming R. Emissions of N2O and CH4 during the composting of liquid swine manure. Environmental Monitoring and Assessment, 2004, 91(1–3): 87–104

    Article  CAS  Google Scholar 

  89. Park K H, Jeon J H, Jeon K H, Kwag J H, Choi D Y. Low greenhouse gas emissions during composting of solid swine manure. Animal Feed Science and Technology, 2011, 166–167(0): 550–556

    Google Scholar 

  90. Osada T, Kuroda K, Yonaga M. Determination of nitrous oxide, methane, and ammonia emissions from a swine waste composting process. Journal of Material Cycles andWaste Management, 2000, 2 (1): 51–56

    CAS  Google Scholar 

  91. Nicks B, Laitat M, Vandenheede M, Désiron A, Verhaeghe C, Canart B. Emissions of ammonia, nitrous oxide, methane, carbon dioxide and water vapor in the raising of weaned pigs on strawbased and sawdust-based deep litters. Animal Research, 2003, 52 (3): 299–308

    Article  CAS  Google Scholar 

  92. Szanto G L, Hamelers H V, Rulkens W H, Veeken A H. NH3, N2O and CH4 emissions during passively aerated composting of strawrich pig manure. Bioresource Technology, 2007, 98(14): 2659–2670

    Article  CAS  Google Scholar 

  93. Sommer S G, Møller H B. Emission of greenhouse gases during composting of deep litter from pig production–effect of straw content. Journal of Agricultural Science, 2000, 134(3): 327–335

    Article  Google Scholar 

  94. Cabaraux J F, Philippe F X, Laitat M, Canart B, Vandenheede M, Nicks B. Gaseous emissions from weaned pigs raised on different floor systems. Agriculture, Ecosystems & Environment, 2009, 130 (3–4): 86–92

    Article  CAS  Google Scholar 

  95. Jiang T, Schuchardt F, Li G, Guo R, Zhao Y. Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. Journal of Environmental Sciences-China, 2011, 23(10): 1754–1760

    Article  CAS  Google Scholar 

  96. Béline F, Daumer M L, Loyon L, Pourcher A M, Dabert P, Guiziou F, Peu P. The efficiency of biological aerobic treatment of piggery wastewater to control nitrogen, phosphorus, pathogen and gas emissions. Water Science and Technology, 2008, 57(12): 1909–1914

    Article  Google Scholar 

  97. Vanotti M B, Szogi A A, Vives C A. Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms. Waste Management (New York, N.Y.), 2008, 28(4): 759–766

    Article  CAS  Google Scholar 

  98. Huang W, Zhao Z, Yuan T, Lei Z, Cai W, Li H, Zhang Z. Effective ammonia recovery from swine excreta through dry anaerobic digestion followed by ammonia stripping at high total solids content. Biomass and Bioenergy, 2016, 90: 139–147

    Article  CAS  Google Scholar 

  99. McAuliffe G A, Chapman D V, Sage C L. A thematic review of life cycle assessment (LCA) applied to pig production. Environmental Impact Assessment Review, 2016, 56: 12–22

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the Green Farm project supported by a Science Foundation Ireland Investigator Project Award (Ref: 12/IP/1519).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinmin Zhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dennehy, C., Lawlor, P.G., Jiang, Y. et al. Greenhouse gas emissions from different pig manure management techniques: a critical analysis. Front. Environ. Sci. Eng. 11, 11 (2017). https://doi.org/10.1007/s11783-017-0942-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0942-6

Keywords

Navigation