Skip to main content
Log in

Effects of seed particles Al2O3, Al2(SO4)3 and H2SO4 on secondary organic aerosol

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Seed particles Al2O3, Al2(SO4)3 and H2SO4 were selected to investigate their effects on secondary aerosol (SA) formation in toluene/NO x photooxidation under sulfur dioxide (SO2) and ammonia (NH3). Effect of seed particles on SA formation was related to their acid-base properties and the presence of acid or alkaline gases. Under NH3-poor condition, SA formation increased with increasing SO2 concentration due to the acid-catalyzing effect of the oxidation products of SO2 (i.e. H2SO4). The enhancing effect of SO2 became unobvious under NH3-rich condition, because NH3 would eliminate the acid-catalyzing effect by neutralizing the acid products. Acidic seeds H2SO4 accelerated SA formation under either SO2 or NH3 condition. Weak acidic Al2(SO4)3 seeds didn’t affect obviously on SA formation. The inhibiting effect of amphoteric seeds Al2O3 on SA formation was related to the presence of SO2 / NH3 due to their acid-base property. Under NH3-poor condition, the inhibiting effect of Al2O3 on SA formation decreased with increasing concentration of SO2, while under NH3-rich condition, the inhibiting effect wasn’t remarkable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu G S, Xu Y F, Jia L. Effects of relative humidity on the characterization of a photochemical smog chamber. Journal of Environmental Sciences-China, 2011, 23(12): 2013–2018

    Article  CAS  Google Scholar 

  2. von Heßsberg C, von Hessberg P, Pöschl U, Bilde M, Nielsen O J, Moortgat G K. Temperature and humidity dependence of secondary organic aerosol yield from the ozonolysis of ß-pinene. Atmospheric Chemistry and Physics, 2009, 9(11): 3583–3599

    Article  Google Scholar 

  3. Liu X Y, Zhang WJ, Huang M Q, Wang Z Y, Hao L Q, Zhao W W. Effect of illumination intensity and light application time on secondary organic aerosol formation from the photooxidation of alpha-pinene. Journal of Environmental Sciences-China, 2009, 21(4): 447–451

    Article  Google Scholar 

  4. Song C, Na K S, Cocker D R. Impact of the hydrocarbon to NOx ratio on secondary organic aerosol formation. Environmental Science & Technology, 2005, 39(9): 3143–3149

    Article  CAS  Google Scholar 

  5. Chu B W, Hao J M, Takekawa H, Li J H, Wang K, Jiang J K. The remarkable effect of FeSO4 seed aerosols on secondary organic aerosol formation from photooxidation of a-pinene/NOx and toluene/NOx. Atmospheric Environment, 2012, 55(55): 26–34

    Article  CAS  Google Scholar 

  6. Odum J R, Hoffmann T, Bowman F, Collins D, Flagan R C, Seinfeld J H. Gas/particle partitioning and secondary organic aerosol yields. Environmental Science & Technology, 1996, 30(8): 2580–2585

    Article  CAS  Google Scholar 

  7. Jang M S, Czoschke N M, Lee S, Kamens R M. Heterogeneous atmospheric aerosol production by acid-catalyzed particle-phase reactions. Science, 2002, 298(5594): 814–817

    Article  CAS  Google Scholar 

  8. Kulmala M, Petäjä T, Kerminen V M, Kujansuu J, Ruuskanen T, Ding A, Nie W, Hu M, Wang Z, Wu Z, Wang L, Worsnop D R. On secondary new particle formation in China. Frontiers of Environmental Science & Engineering, 2016, 10(5): 08

    Article  Google Scholar 

  9. Czoschke N M, Jang M, Kamens R M. Effect of acidic seed on biogenic secondary organic aerosol growth. Atmospheric Environment, 2003, 37(30): 4287–4299

    Article  CAS  Google Scholar 

  10. Liu C, Chu B W, Liu Y C, Ma Q X, Ma J Z, He H, Li J H, Hao J M. Effect of mineral dust on secondary organic aerosol yield and aerosol size in a-pinene/NOx photo-oxidation. Atmospheric Environment, 2013, 77: 781–789

    Article  CAS  Google Scholar 

  11. Giere R, Querol X. Solid particulate matter in the atmosphere. Elements (Quebec), 2010, 6(4): 215–222

    Article  CAS  Google Scholar 

  12. Gao M, Carmichael G R, Wang Y, Ji D, Liu Z, Wang Z. Improving simulations of sulfate aerosols during winter haze over Northern China: the impacts of heterogeneous oxidation by NO2. Frontiers of Environmental Science & Engineering, 2016, 10(5): 16

    Article  Google Scholar 

  13. Zhao N, Zhang Q, Wang W. Heterogeneous reaction mechanism of gaseous HNO3 with solid NaCl: a density functional theory study. Frontiers of Environmental Science & Engineering, 2016, 10(5): 03

    Article  Google Scholar 

  14. Ma J Z, Liu Y C, He H. Degradation kinetics of anthracene by ozone on mineral oxides. Atmospheric Environment, 2010, 44(35): 4446–4453

    Article  CAS  Google Scholar 

  15. Behera S N, Sharma M. Degradation of SO2, NO2 and NH3 leading to formation of secondary inorganic aerosols: an environmental chamber study. Atmospheric Environment, 2011, 45(24): 4015–4024

    Article  CAS  Google Scholar 

  16. Shukla S P, Sharma M. Source appointment of atmospheric PM10 in Kanpur, India. Environmental Engineering Science, 2008, 25(6): 849–862

    Article  CAS  Google Scholar 

  17. Sharma M, Kishore S, Tripathi S N, Behera S N. Role of atmospheric ammonia in the formation of inorganic secondary particulate matter: A study at Kanpur, India. Journal of Atmospheric Chemistry, 2007, 58(1): 1–17

    Article  CAS  Google Scholar 

  18. Santiago M, Vivanco M G, Stein A F. SO2 effect on secondary organic aerosol from a mixture of anthropogenic VOCs: experimental and modelled results. International Journal of Environment and Pollution, 2012, 50(1/2/3/4): 224–233

    Article  CAS  Google Scholar 

  19. Kleindienst T E, Edney E O, Lewandowski M, Offenberg J H, Jaoui M. Secondary organic carbon and aerosol yields from the irradiations of isoprene and alpha-pinene in the presence of NOx and SO2. Environmental Science & Technology, 2006, 40(12): 3807–3812

    Article  CAS  Google Scholar 

  20. Jaoui M, Edney E O, Kleindienst T E, Lewandowski M, Offenberg J H, Surratt J D, Seinfeld J H. Formation of secondary organic aerosol from irradiated alpha-pinene/toluene/NOx mixtures and the effect of isoprene and sulfur dioxide. Journal of Geophysical Research-Atmospheres, 2008, 113(D9): D09303

    Article  Google Scholar 

  21. Tang Y H, Carmichael G R, Kurata G, Uno I, Weber R J, Song C H, Guttikunda S K, Woo J H, Streets D G, Wei C, Clarke A D, Huebert B, Anderson T L. Impacts of dust on regional tropospheric chemistry during the ACE-Asia experiment: a model study with observations. Journal of Geophysical Research-Atmospheres, 2004, 109 (D19): D19521

    Google Scholar 

  22. Adams J W, Rodriguez D, Cox R A. The uptake of SO2 on Saharan dust: a flow tube study. Atmospheric Chemistry and Physics, 2005, 5(10): 2679–2689

    Article  CAS  Google Scholar 

  23. Wu S, Lu Z F, Hao J M, Zhao Z, Li J H, Takekawa H, Minoura H, Yasuda A. Construction and characterization of an atmospheric simulation smog chamber. Advances in Atmospheric Sciences, 2007, 24(2): 250–258

    Article  CAS  Google Scholar 

  24. Liu C, Liu Y C,Ma Q X, He H. Mesoporous transition alumina with uniform pore structure synthesized by alumisol spray pyrolysis. Chemical Engineering Journal, 2010, 163(1–2): 133–142

    Article  CAS  Google Scholar 

  25. Roberts J M, Veres P, Warneke C, Neuman J A, Washenfelder R A, Brown S S, Baasandorj M, Burkholder J B, Burling I R, Johnson T J, Yokelson R J, De Gouw J. Measurement of HONO, HNCO, and other inorganic acids by negative-ion proton-transfer chemicalionization mass spectrometry (NI-PT-CIMS): application to biomass burning emissions. Atmospheric Measurement Techniques, 2010, 3(4): 981–990

    Article  CAS  Google Scholar 

  26. Takekawa H, Minoura H, Yamazaki S. Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons. Atmospheric Environment, 2003, 37(24): 3413–3424

    Article  CAS  Google Scholar 

  27. Chu BW, Liu Y C, Li J H, Takekawa H, Liggio J, Li SM, Jiang J K, Hao J M, He H. Decreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in a-pinene photooxidation. Environmental Pollution, 2014, 193(1): 88–93

    Article  CAS  Google Scholar 

  28. Hao L Q, Wang Z Y, Huang M Q, Fang L, Zhang W J. Effects of seed aerosols on the growth of secondary organic aerosols from the photooxidation of toluene. Journal of Environmental Sciences-China, 2007, 19(6): 704–708

    Article  CAS  Google Scholar 

  29. Hao L Q,Wang Z Y, HuangMQ, Pei S X, Yang Y, ZhangWJ. Size distribution of the secondary organic aerosol particles from the photooxidation of toluene. Journal of Environmental Sciences-China, 2005, 17(6): 912–916

    CAS  Google Scholar 

  30. Hao L Q,Wang Z Y, Fang L, Zhang WJ, Wang W, Li C X, Sheng L S. Characterization of products from photooxidation of toluene. Journal of Environmental Sciences-China, 2006, 18(5): 903–909

    Article  CAS  Google Scholar 

  31. Huang M Q, Zhang W J, Hao L Q, Wang Z Y, Zhou L Z, Gu X J, Fang L. Chemical composition and reaction mechanisms for secondary organic aerosol from photooxidation of toluene. Journal of the Chilean Chemical Society, 2006, 53(5): 1149–1156

    Article  CAS  Google Scholar 

  32. Na K, Song C, Switzer C, Cocker D R. Effect of ammonia on secondary organic aerosol formation from alpha-pinene ozonolysis in dry and humid conditions. Environmental Science & Technology, 2007, 41(17): 6096–6102

    Article  CAS  Google Scholar 

  33. Harrison R M, Kitto A M N. Estimation of the rate constant for the reaction of acid sulphate aerosol with NH3 gas from atmospheric measurements. Journal of Atmospheric Chemistry, 1992, 15(2): 133–143

    Article  CAS  Google Scholar 

  34. Baek B H, Aneja V P, Tong Q S. Chemical coupling between ammonia, acid gases, and fine particles. Environmental Pollution, 2004, 129(1): 89–98

    Article  CAS  Google Scholar 

  35. Chu BW, Liu T Y, Zhang X, Liu Y C, Ma Q X, Ma J Z, He H, Wang X M, Li J H, Hao J M. Secondary aerosol formation and oxidation capacity in photooxidation in the presence of Al2O3 seed particles and SO2. Science China. Chemistry, 2015, 58(9): 1426–1434

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Foundation for Returned Scholars from Ministry of Education of China (No. 2013S010), Six Talent Peaks Project in Jiangsu Province (No. R2015L12). This work was also supported by the “Strategic Priority Research Program” of the Chinese Academy of Sciences (Nos. XDB05010102 and XDB05030100) and National Natural Science Foundation of China (Grant No. 21407158).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junhua Li or Chaozhi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chu, B., Li, J. et al. Effects of seed particles Al2O3, Al2(SO4)3 and H2SO4 on secondary organic aerosol. Front. Environ. Sci. Eng. 11, 5 (2017). https://doi.org/10.1007/s11783-017-0936-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-017-0936-4

Keywords

Navigation