An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity

Research Article

Abstract

In this study, a new water treatment system that couples (photo-) electrochemical catalysis (PEC or EC) in a microbial fuel cell (MFC) was configured using a stainless-steel (SS) cathode coated with Fe0/TiO2. We examined the destruction of methylene blue (MB) and tetracycline. Fe0/TiO2 was prepared using a chemical reduction-deposition method and coated onto an SS wire mesh (500 mesh) using a sol technique. The anode generates electricity using microbes (bio-anode). Connected via wire and ohmic resistance, the system requires a short reaction time and operates at a low cost by effectively removing 94% MB (initial concentration 20 mg∙L–1) and 83% TOC/TOC0 under visible light illumination (50 W; 1.99 mW∙cm–2 for 120 min, MFC-PEC). The removal was similar even without light irradiation (MFC-EC). The EEo of the MFC-PEC system was approximately 0.675 kWh∙m–3∙order–1, whereas that of the MFC-EC system was zero. The system was able to remove 70% COD in tetracycline solution (initial tetracycline concentration 100 mg∙L–1) after 120 min of visible light illumination; without light, the removal was 15% lower. The destruction of MB and tetracycline in both traditional photocatalysis and photoelectrocatalysis systems was notably low. The electron spinresonance spectroscopy (ESR) study demonstrated that ∙OH was formed under visible light, and ∙O2 was formed without light. The bio-electricity-activated O2 and ROS (reactive oxidizing species) generation by Fe0/TiO2 effectively degraded the pollutants. This cathodic degradation improved the electricity generation by accepting and consuming more electrons from the bio-anode.

Keywords

Bio-anode Photocatalytic cathode Fe0/TiO2 ESR Dye and antibiotics Advanced oxidation 

References

  1. 1.
    Liu Y B, Li J H, Zhou B X, Li X J, Chen H C, Chen Q P, Wang Z S, Li L, Wang J L, Cai W M. Efficient electricity production and simultaneously wastewater treatment via a high-performance photocatalytic fuel cell. Water Research, 2011, 45(13): 3991–3998CrossRefGoogle Scholar
  2. 2.
    Lin L, Wang H Y, Luo H M, Xu P. Enhanced photocatalysis using side-glowing optical fibers coated with Fe-doped TiO2 nanocomposite thin films. Journal of Photochemistry and Photobiology A Chemistry, 2015, 307–308: 88–98Google Scholar
  3. 3.
    Chen Q P, Bai J, Li J H, Huang K, Li X J, Zhou B X, Cai W M. Aerated visible-light responsive photocatalytic fuel cell for wastewater treatment with producing sustainable electricity in neutral solution. Chemical Engineering Journal, 2014, 252: 89–94CrossRefGoogle Scholar
  4. 4.
    Lai B, Wang P, Li H R, Du Z W, Wang L J, Bi S C. Calcined polyaniline-iron composite as a high efficient cathodic catalyst in microbial fuel cells. Bioresource Technology, 2013, 131: 321–324CrossRefGoogle Scholar
  5. 5.
    Li J Y, Li J H, Chen Q P, Bai J, Zhou B X. Converting hazardous organics into clean energy using a solar responsive dual photoelectrode photocatalytic fuel cell. Journal of Hazardous Materials, 2013, 262: 304–310CrossRefGoogle Scholar
  6. 6.
    Jadhav D A, Ghadge A N, Ghangrekar M M. Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst. Bioresource Technology, 2015, 191: 110–116CrossRefGoogle Scholar
  7. 7.
    Lee K Y, RyuW S, Cho S I, Lim K H. Comparative study on power generation of dual-cathode microbial fuel cell according to polarization methods. Water Research, 2015, 84: 43–48CrossRefGoogle Scholar
  8. 8.
    Wang A J, Cheng H Y, Ren N Q, Cui D, Lin N,WuW M. Sediment microbial fuel cell with floating biocathode for organic removal and energy recovery. Frontiers of Environmental Science and Engineering, 2012, 6(4): 569–574CrossRefGoogle Scholar
  9. 9.
    Liang P, Wei J C, Li M, Huang X. Scaling up a novel denitrifying microbial fuel cell with an oxic-anoxic two stage biocathode. Frontiers of Environmental Science and Engineering, 2013, 7(6): 913–919CrossRefGoogle Scholar
  10. 10.
    Liu W F, Cheng S A, Sun D, Huang B, Chen J, Cen K F. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer. Biosensors & Bioelectronics, 2015, 72: 44–50CrossRefGoogle Scholar
  11. 11.
    Liao Z H, Sun J Z, Sun D Z, Si R W, Yong Y C. Enhancement of power production with tartaric acid doped polyaniline nanowire network modified anode in microbial fuel cells. Bioresource Technology, 2015, 192: 831–834CrossRefGoogle Scholar
  12. 12.
    Xiao Y, Zheng Y, Wu S, Yang Z H, Zhao F. Nitrogen recovery from wastewater using microbial fuel cells. Frontiers of Environmental Science and Engineering, 2016, 10(1): 185–191CrossRefGoogle Scholar
  13. 13.
    Wang Z J, Zhang B G, Alistair G L B, Feng C Q, Ni J R. Utilization of single-chamber microbial fuel cells as renewable power sources for electrochemical degradation of nitrogen-containing organic compounds. Chemical Engineering Journal, 2015, 280: 99–105CrossRefGoogle Scholar
  14. 14.
    Tang WW, Chen X Y, Xia J, Gong JM, Zeng X P. Preparation of an Fe-doped visible-light-response TiO2 film electrodeand its photoelectrocatalytic activity. Materials Science and Engineering B, 2014, 187: 39–45CrossRefGoogle Scholar
  15. 15.
    Ding X, Ai Z H, Zhang L Z. A dual-cell wastewater treatment system with combining anodic visible light driven photoelectrocatalytic oxidation and cathodic electro-Fenton oxidation. Separation and Purification Technology, 2014, 125: 103–110CrossRefGoogle Scholar
  16. 16.
    Li J, Lv S, Liu Y, Bai J, Zhou B, Hu X. Photoeletrocatalytic activity of an n-ZnO/p-Cu2O/n-TNA ternary heterojunction electrode for tetracycline degradation. Journal of Hazardous Materials, 2013, 262: 482–488CrossRefGoogle Scholar
  17. 17.
    Liu Y B, Li H, Zhou B X, Lv S B, Li X J, Chen H C, Chen Q P, Cai W M. Photoelectrocatalytic degradation of refractory organic compounds enhanced by a photocatalytic fuel cell. Applied Catalysis B: Environmental, 2012, 111–112: 485–491CrossRefGoogle Scholar
  18. 18.
    Xu S C, Pan S S, Xu Y, Luo Y Y, Zhang Y X, Li G H. Efficient removal of Cr(VI) from wastewater under sunlight by Fe(II)-doped TiO2 spherical shell. Journal of Hazardous Materials, 2015, 283: 7–13CrossRefGoogle Scholar
  19. 19.
    Chen C, LongMC, Zeng H, CaiWM, Zhou B X, Zhang J Y, Wu Y, Ding D W, Wu D Y. Preparation, characterization and visible-light activity of carbon modified TiO2 with two kinds of carbonaceous species. Journal of Molecular Catalysis A Chemical, 2009, 314(1–2): 35–41CrossRefGoogle Scholar
  20. 20.
    Yao Y, Li K, Chen S, Ji J P, Wang Y L, Wang H W. Decolorization of Rhodamine B in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2 nanotubes electrode. Chemical Engineering Journal, 2012, 187: 29–35CrossRefGoogle Scholar
  21. 21.
    Hsieh W P, Pan J R, Huang C, Su Y C, Juang Y J. Enhance the photocatalytic activity for the degradation of organic contaminants in water by incorporating TiO2 with zero-valent iron. Science of the Total Environment, 2010, 408(3): 672–679CrossRefGoogle Scholar
  22. 22.
    Rodriguez S, Vasquez L, Costa D, Romero A, Santos A. Oxidation of Orange G by persulfate activated by Fe(II), Fe(III) and zero valent iron (ZVI). Chemosphere, 2014, 101: 86–92CrossRefGoogle Scholar
  23. 23.
    Wang Z Q, Wen B, Hao Q Q, Liu LM, Zhou C, Mao X, Lang X, Yin W J, Dai D, Selloni A, Yang X. Localized excitation of Ti3+ ions in the photoabsorption and photocatalytic activity of reduced rutile TiO2. Journal of the American Chemical Society, 2015, 137(28): 9146–9152CrossRefGoogle Scholar
  24. 24.
    Xu Y L, Jia J P, Zhong D J, Wang Y L. Degradation of dye wastewater in a thin-film photoelectrocatalytic (PEC) reactor with slant-placed TiO2/Ti anode. Chemical Engineering Journal, 2009, 150(2–3): 302–307CrossRefGoogle Scholar
  25. 25.
    Yang J, Cao M, Guo R, Jia J P. Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water. Journal of Hazardous Materials, 2010, 184(1–3): 782–787CrossRefGoogle Scholar
  26. 26.
    Kim J H, Park I S, Park J Y. Electricity generation and recovery of iron hydroxides using a single chamber fuel cell with iron anode and air-cathode for electrocoagulation. Applied Energy, 2015, 160: 18–27CrossRefGoogle Scholar
  27. 27.
    Liu L F, Chen F, Yang F L, Che Y S, Crittenden J. Photocatalytic degradation of 2,4-dichlorophenol using nanoscale Fe/TiO2. Chemical Engineering Journal, 2012, 181–182: 189–195CrossRefGoogle Scholar
  28. 28.
    Daneshvar N, Aber S, Seyed DorrajiM S, Khataee A R, Rasoulifard M H. Photocatalytic degradation of the insecticide diazinon in the presence of prepared nanocrystalline ZnO powders under irradiation of UV-C light. Separation and Purification Technology, 2007, 58(1): 91–98CrossRefGoogle Scholar
  29. 29.
    Muruganandham M, Selvam K, Swaminathan M. A comparative study of quantum yield and electrical energy per order (EEo) for advanced oxidative decolourisation of reactive azo dyes by UV light. Journal of Hazardous Materials, 2007, 144(1–2): 316–322CrossRefGoogle Scholar
  30. 30.
    Daneshvar N, Aleboyeh A, Khataee A R. The evaluation of electrical energy per order (EEo) for photooxidative decolorization of four textile dye solutions by the kinetic model. Chemosphere, 2005, 59(6): 761–767CrossRefGoogle Scholar
  31. 31.
    Behnajady M A, Vahid B, Modirshahla N, Shokri M. Evaluation of electrical energy per order (EEo) with kinetic modeling on the removal of Malachite Green by US/UV/H2O2 process. Desalination, 2009, 249(1): 99–103CrossRefGoogle Scholar
  32. 32.
    He C, Yu Y, Hu X F, Larbot A. Influence of silver doping on the photocatalytic activity of titania films. Applied Surface Science, 2002, 200(1–4): 239–247CrossRefGoogle Scholar
  33. 33.
    Atsushi K.A combination of Electron Spin Resonance spectroscopy/ atom transfer radical polymerization (ESR/ATRP) techniques for fundamental investigation of radical polymerizations of (meth) acrylates. Polymer, 2015, 72: 253–263Google Scholar
  34. 34.
    Fujishima A, Zhang X, Tryk D A. TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008, 63(12): 515–582CrossRefGoogle Scholar
  35. 35.
    Huang C, Hsieh W P, Pan J R, Chang S M. Characteristic of an innovative TiO2/Fe0 composite for treatment of azo dye. Separation and Purification Technology, 2007, 58(1): 152–158CrossRefGoogle Scholar
  36. 36.
    Jayanthi Kalaivani G, Suja S K. TiO2 (rutile) embedded inulin—A versatile bio-nanocomposite for photocatalytic degradation of methylene blue. Carbohydrate Polymers, 2016, 143: 51–60CrossRefGoogle Scholar
  37. 37.
    Shestakova M, Graves J, Sitarz M, Sillanpää M. Optimization of Ti/Ta2O5–SnO2 electrodes and reaction parameters for electrocatalytic oxidation of methylene blue. Journal of Applied Electrochemistry, 2016, 46(3): 349–358CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and TechnologyDalian University of TechnologyDalianChina
  2. 2.School of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations