Enhanced disinfection of Escherichia coli and bacteriophage MS2 in water using a copper and silver loaded titanium dioxide nanowire membrane

  • Guiying Rao
  • Kristen S. Brastad
  • Qianyi Zhang
  • Rebecca Robinson
  • Zhen He
  • Ying Li
Research Article


Titanium dioxide (TiO2) is a widely used photocatalyst that has been demonstrated for microorganism disinfection in drinking water. In this study, a new material with a novel structure, silver and copper loaded TiO2 nanowire membrane (Cu-Ag-TiO2) was prepared and evaluated for its efficiency to inactivate E. coli and bacteriophage MS2. Enhanced photo-activated bactericidal and virucidal activities were obtained by the Cu-Ag-TiO2 membrane than by the TiO2, Ag-TiO2 and Cu-TiO2 membranes under both dark and UV light illumination. The better performance was attributed to the synergies of enhanced membrane photoactivity by loading silver and copper on the membrane and the synergistic effect between the free silver and copper ions in water. At the end of a 30 min test of deadend filtration under 254 nm UV irradiation, the Cu-Ag-TiO2 membrane was able to obtain an E. coli removal of 7.68 log and bacteriophage MS2 removal of 4.02 log, which have met the US EPA standard. The free metal ions coming off the membrane have concentrations of less than 10 ppb in the water effluent, far below the US EPA maximum contaminant level for silver and copper ions in drinking water. Therefore, the photo-activated disinfection by the Cu-Ag-TiO2 membrane is a viable technique for meeting drinking water treatment standards of microbiological water purifiers.


Photo-activated disinfection Titanium dioxide Nanowire membrane Silver Copper 

Supplementary material

11783_2016_854_MOESM1_ESM.pdf (65 kb)
Supplementary material, approximately 66 KB.


  1. 1.
    Murray K E, Manitou-Alvarez E I, Inniss E C, Healy F G, Bodour A A. Assessment of oxidative and UV-C treatments for inactivating bacterial biofilms from groundwater wells. Frontiers of Environmental Science & Engineering, 2015, 9(1): 39–49CrossRefGoogle Scholar
  2. 2.
    Pablos C, Marugán J, van Grieken R, Serrano E. Emerging micropollutant oxidation during disinfection processes using UVC, UV-C/H2O2, UV-A/TiO2 and UV-A/TiO2/H2O2. Water Research, 2013, 47(3): 1237–1245CrossRefGoogle Scholar
  3. 3.
    Ollis D F. Photocatalytic purification and remediation of contaminated air and water. Comptes Rendus de l’Académie des Sciences Series IIC: Chemistry, 2000, 3(6): 405–411CrossRefGoogle Scholar
  4. 4.
    Thabet S, Weiss-Gayet M, Dappozze F, Cotton P, Guillard C. Photocatalysis on yeast cells: toward targets and mechanisms. Applied Catalysis B: Environmental, 2013, 140–141: 169–178CrossRefGoogle Scholar
  5. 5.
    Chen X, Mao S S. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chemical Reviews, 2007, 107(7): 2891–2959CrossRefGoogle Scholar
  6. 6.
    Wang S, Wang K, Jehng J, Liu L. Preparation of TiO2/MCM-41 by plasma enhanced chemical vapor deposition method and its photocatalytic activity. Frontiers of Environmental Science & Engineering, 2012, 6(3): 304–312CrossRefGoogle Scholar
  7. 7.
    Coleman H M, Marquis C P, Scott J A, Chin S S, Amal R. Bactericidal effects of titanium dioxide-based photocatalysts. Chemical Engineering Journal, 2005, 113(1): 55–63CrossRefGoogle Scholar
  8. 8.
    Li Q, Mahendra S, Lyon D Y, Brunet L, Liga M V, Li D, Alvarez P J J. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Research, 2008, 42(18): 4591–4602CrossRefGoogle Scholar
  9. 9.
    Ashkarran A A, Aghigh S M, Kavianipour M, Farahani N J. Visible light photo-and bioactivity of Ag/TiO2 nanocomposite with various silver contents. Current Applied Physics, 2011, 11(4): 1048–1055CrossRefGoogle Scholar
  10. 10.
    Selvaraj S, Saha K C, Chakraborty A, Bhattacharyya S N, Saha A. Toxicity of free and various aminocarboxylic ligands sequestered copper(II) ions to Escherichia coli. Journal of Hazardous Materials, 2009, 166(2–3): 1403–1409CrossRefGoogle Scholar
  11. 11.
    Khraisheh M, Wu L, Al-Muhtaseb A H, Al-Ghouti M A. Photocatalytic disinfection of Escherichia coli using TiO2-P25 and Cu-doped TiO2. Chemical Engineering Journal, 2005, 113: 55–63CrossRefGoogle Scholar
  12. 12.
    McEvoy J G, Zhang Z. Review: antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2014, 19: 62–75CrossRefGoogle Scholar
  13. 13.
    Liga MV, Bryant E L, Colvin V L, Li Q. Virus inactivation by silver doped titanium dioxide nanoparticles for drinking water treatment. Water Research, 2011, 45(2): 535–544CrossRefGoogle Scholar
  14. 14.
    Hernández-Gordillo A, González V R. Silver nanoparticles loaded on Cu-doped TiO2 for the effective reduction of nitro-aromatic contaminants. Chemical Engineering Journal, 2015, 261: 53–59CrossRefGoogle Scholar
  15. 15.
    Behnajady M A, Eskandarloo H. Silver and copper co-impregnated onto TiO2-P25 nanoparticles and its photocatalytic activity. Chemical Engineering Journal, 2013, 228: 1207–1213CrossRefGoogle Scholar
  16. 16.
    Fang J, Liu H, Shang C, Zeng M, Ni M, Liu W. E. coli and bacteriophage MS2 disinfection by UV, ozone and the combined UV and ozone processes. Frontiers of Environmental Science & Engineering, 2014, 8(4): 547–552CrossRefGoogle Scholar
  17. 17.
    Anastasi E M, Wohlsen T D, Stratton H M, Katouli M. Survival of Escherichia coli in two sewage treatment plants using UV irradiation and chlorination for disinfection. Water Research, 2013, 47(17): 6670–6679CrossRefGoogle Scholar
  18. 18.
    Vélez-Colmenares J J, Acevedo A, Nebot E. Effect of recirculation and initial concentration of microorganisms on the disinfection kinetics of Escherichia coli. Desalination, 2011, 280(1–3): 20–26CrossRefGoogle Scholar
  19. 19.
    Venieri D, Gounaki I, Binas V, Zachopoulos A, Kiriakidis G, Mantzavinos D. Inactivation of MS2 coliphage in sewage by solar photocatalysis using metal-doped TiO2. Applied Catalysis B: Environmental, 2015, 178: 54–64CrossRefGoogle Scholar
  20. 20.
    Sigstam T, Rohatschek A, Zhong Q, Brennecke M, Kohn T. On the cause of the tailing phenomenon during virus disinfection by chlorine dioxide. Water Research, 2014, 48: 82–89CrossRefGoogle Scholar
  21. 21.
    Zhang Q, Rao G, Rogers J, Zhao C, Liu L, Li Y. Novel anti-fouling Fe2O3/TiO2 nanowire membranes for humic acid removal from water. Chemical Engineering Journal, 2015, 271: 180–187CrossRefGoogle Scholar
  22. 22.
    Li M, Noriega-Trevino M E, Nino-Martinez N, Marambio-Jones C, Wang J, Damoiseaux R, Ruiz F, Hoek E M V. Synergistic bactericidal activity of Ag-TiO2 nanoparticles in both light and dark conditions. Environmental Science & Technology, 2011, 45(20): 8989–8995CrossRefGoogle Scholar
  23. 23.
    Yadav H M, Otari S V, Koli V B, Mali S S, Hong C K, Pawar S H, Delekar S D. Preparation and characterization of copper-doped anatase TiO2 nanoparticles with visible light photocatalytic antibacterial activity. Journal of Photochemistry and Photobiology A Chemistry, 2014, 280: 32–38CrossRefGoogle Scholar
  24. 24.
    Giesche H. Mercury porosimetry: a general (practical) overview. Particle & Particle Systems Characterization, 2006, 23(1): 1–11CrossRefGoogle Scholar
  25. 25.
    Lynch C T. CRC Handbook of Materials Science, Volume II: Material Composites and Refractory Materials. Florida: CRC Press, 1975.Google Scholar
  26. 26.
    Li J, Xu J, Dai W, Fan K. Dependence of Ag deposition methods on the photocatalytic activity and surface state of TiO2 with twistlike helix structure. Journal of Physical Chemistry C, 2009, 113(19): 8343–8349CrossRefGoogle Scholar
  27. 27.
    Zhang J, Wang J, Zhao Z, Yu T, Feng J, Yuan Y, Tang Z, Liu Y, Li Z, Zou Z. Reconstruction of the (001) surface of TiO2 nanosheets induced by the fluorine-surfactant removal process under UVirradiation for dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14(14): 4763–4769CrossRefGoogle Scholar
  28. 28.
    Carbonell E, Ramiro-Manzano F, Rodríguez I, Corma A, Meseguer F, García H. Enhancement of TiO2 photocatalytic activity by structuring the photocatalyst film as photonic sponge. Photochemical & Photobiological Sciences, 2008, 7(8): 931–935CrossRefGoogle Scholar
  29. 29.
    Kubitschek H E. Cell volume increase in Escherichia coli after shifts to richer media. Journal of Bacteriology, 1990, 172(1): 94–101Google Scholar
  30. 30.
    Stockley P G, Stonehouse N J, Valegård K. Molecular mechanism of RNA phage morphogenesis. International Journal of Biochemistry, 1994, 26(10–11): 1249–1260CrossRefGoogle Scholar
  31. 31.
    Zhang X, Du A J, Lee P, Sun D D, Leckie J O. TiO2 nanowire membrane for concurrent filtration and photocatalytic oxidation of humic acid in water. Journal of Membrane Science, 2008, 313(1-2): 44–51CrossRefGoogle Scholar
  32. 32.
    Zodrow K, Brunet L, Mahendra S, Li D, Zhang A, Li Q, Alvarez P J J. Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal. Water Research, 2009, 43(3): 715–723CrossRefGoogle Scholar
  33. 33.
    Kaitainen S, Mähönen A J, Lappalainen R, Kröger H, Lammi M J, Qu C. TiO2 coating promotes human mesenchymal stem cell proliferation without the loss of their capacity for chondrogenic differentiation. Biofabrication, 2013, 5(2): 025009CrossRefGoogle Scholar
  34. 34.
    Chen S, Guo Y, Zhong H, Chen S, Li J, Ge Z, Tang J. Synergistic antibacterial mechanism and coating application of copper/titanium dioxide nanoparticles. Chemical Engineering Journal, 2014, 256: 238–246CrossRefGoogle Scholar
  35. 35.
    United States Environmental Protection Agency. Retrieved from: http://water.epa.gov/drink/contaminants/index.cfm (accessed November 25, 2015)Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Guiying Rao
    • 1
  • Kristen S. Brastad
    • 2
    • 3
  • Qianyi Zhang
    • 2
  • Rebecca Robinson
    • 3
  • Zhen He
    • 4
  • Ying Li
    • 1
  1. 1.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of Mechanical EngineeringUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  3. 3.A.O. Smith Corporate Technology CenterMilwaukeeUSA
  4. 4.Department of Civil and Environmental EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations