Utilization of aluminum hydroxide waste generated in fluoride adsorption and coagulation processes for adsorptive removal of cadmium ion

  • Jiawei Ju
  • Ruiping Liu
  • Zan He
  • Huijuan Liu
  • Xiwang Zhang
  • Jiuhui Qu
Research Article


Although Al-based coagulation and adsorption processes have been proved highly efficient for fluoride (F) removal, the two processes both generate large amount of Al(OH)3 solid waste containing F (Al(OH)3-F). This study aimed to investigate the feasibility of utilizing Al(OH)3-F generated in Al(OH)3 adsorption (Al(OH)3-Fads) and coagulation (Al(OH)3-Fcoag) for the adsorption of cadmium ion (Cd(II)). The adsorption capacity of Al(OH)3-Fads and Al(OH)3-Fcoag for Cd(II) was similar as that of pristine aluminum hydroxide (Al(OH)3), being of 24.39 and 19.90 mg·g–1, respectively. The adsorption of Cd(II) onto Al(OH)3-Fads and Al(OH)3-Fcoag was identified to be dominated by ion-exchange with sodium ion (Na+) or hydrogen ion (H+), surface microprecitation, and electrostatic attraction. The maximum concentration of the leached fluoride from Al(OH)3-Fads and Al(OH)3-Fcoag is below the Chinese Class-I IndustrialWastewater Discharge Standard for fluoride (<10 mg·L–1). This study demonstrates that the Al(OH)3 solid wastes generated in fluoride removal process could be potentially utilized as a adsorbent for Cd(II) removal.


Al(OH)3 fluoride cadmium adsorption reclamation sequential extraction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11783_2015_809_MOESM1_ESM.pdf (383 kb)
Supplementary material, approximately 383 KB.


  1. 1.
    Hu C Y, Lo S L, Kuan W H, Lee Y D. Removal of fluoride from semiconductor wastewater by electrocoagulation-flotation. Water Research, 2005, 39(5): 895–901CrossRefGoogle Scholar
  2. 2.
    Zhang G, Gao Y, Zhang Y, Gu P. Removal of fluoride from drinking water by a membrane coagulation reactor (MCR). Desalination, 2005, 177(1–3): 143–155CrossRefGoogle Scholar
  3. 3.
    Cooper C, Jiang J Q, Ouki S. Preliminary evaluation of polymeric Fe–and Al–modified clays as adsorbents for heavy metal removal in water treatment. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2002, 77(5): 546–551CrossRefGoogle Scholar
  4. 4.
    Mahmoud M E, Osman M M, Hafez O F, Hegazi A H, Elmelegy E. Removal and preconcentration of lead (II) and other heavy metals from water by alumina adsorbents developed by surface-adsorbeddithizone. Desalination, 2010, 251(1–3): 123–130CrossRefGoogle Scholar
  5. 5.
    Naiya T K, Bhattacharya A K, Das S K. Adsorption of Cd(II) and Pb (II) from aqueous solutions on activated alumina. Journal of Colloid and Interface Science, 2009, 333(1): 14–26CrossRefGoogle Scholar
  6. 6.
    Granados-Correa F, Corral-Capulin N G, Olguín M T, Acosta-León C E. Comparison of the Cd (II) adsorption processes between boehmite (γ-AlOOH) and goethite (α-FeOOH). Chemical Engineering Journal, 2011, 171(3): 1027–1034CrossRefGoogle Scholar
  7. 7.
    Orescanin V, Kollar R, Halkijevic I, Kuspilic M, Flegar V. Neutralization/purification of the wastewaters from printed circuit boards production using waste by-products. Journal of Environmental Science and Health. Part A: Environmental Science and Engineering & Toxic and Hazardous Substance Control, 2014, 49 (5): 540–544CrossRefGoogle Scholar
  8. 8.
    Sun W, Yin K, Yu X. Effect of natural aquatic colloids on Cu(II) and Pb(II) adsorption by Al2O3 nanoparticles. Chemical Engineering Journal, 2013, 225(1): 464–473CrossRefGoogle Scholar
  9. 9.
    Smiciklas I, Smiljanic S, Peric-Grujic A, Šljivic-Ivanovic M, Antonovic D. The influence of citrate anion on Ni (II) removal by raw red mud from aluminum industry. Chemical Engineering Journal, 2013, 214(1): 327–335CrossRefGoogle Scholar
  10. 10.
    Lagergren S. Zur heorie der sogenannten adsorption geloster stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar, 1898, 24(4): 1–39Google Scholar
  11. 11.
    Ho Y S, McKay G. Pseudo-second order model for sorption processes. Process Biochemistry, 1999, 34(5): 451–465CrossRefGoogle Scholar
  12. 12.
    McKay G, Blair H, Gardner J. Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science, 1982, 27 (8): 3043–3057CrossRefGoogle Scholar
  13. 13.
    Liu H, Cai X, Wang Y, Chen J. Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Research, 2011, 45(11): 3499–3511CrossRefGoogle Scholar
  14. 14.
    Liang J, Xu R, Jiang X, Wang Y, Zhao A, Tan W. Effect of arsenate on adsorption of Cd(II) by two variable charge soils. Chemosphere, 2007, 67(10): 1949–1955CrossRefGoogle Scholar
  15. 15.
    Mansour M, Ossman M, Farag H. Removal of Cd (II) ion from waste water by adsorption onto polyaniline coated on sawdust. Desalination, 2011, 272(1–3): 301–305CrossRefGoogle Scholar
  16. 16.
    Kinniburgh D, Syers J, Jackson M. Specific adsorption of trace amounts of calcium and strontium by hydrous oxides of iron and aluminum. Soil Science Society of America Journal, 1975, 39(3): 464–470CrossRefGoogle Scholar
  17. 17.
    Breen C, Bejarano-Bravo C M, Madrid L, Thompson G, Mann B E. Na/Pb, Na/Cd and Pb/Cd exchange on a low iron Texas bentonite in the presence of competin H+ ion. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 1999, 155(2–3): 211–219CrossRefGoogle Scholar
  18. 18.
    Liu Y, Zhao Q, Cheng G, Xu H. Exploring the mechanism of lead (II) adsorption from aqueous solution on ammonium citrate modified spent Lentinus edodes. Chemical Engineering Journal, 2011, 173(3): 792–800CrossRefGoogle Scholar
  19. 19.
    Trivedi P, Axe L. Modeling Cd and Zn Sorption to Hydrous Metal Oxides. Environmental Science & Technology, 2000, 34(11): 2215–2223CrossRefGoogle Scholar
  20. 20.
    Wagner C D, Riggs W M, Davis L E, Moulder J F. Handbook of Xray Photoelec-tron Spectroscopy. Eden Prairie, Minnesota: Physical Electronics Division, Perkin-Elmer Corporation, 1979Google Scholar
  21. 21.
    Hirsch D, Nir S, Banin A. Prediction of cadmium complexation in solution and adsorption to montmorillonite. Soil Science Society of America Journal, 1989, 53(3): 716–721CrossRefGoogle Scholar
  22. 22.
    Cheng C, Wang J, Yang X, Li A, Philippe C. Adsorption of Ni(II) and Cd(II) from water by novel chelating sponge and the effect of alkali-earth metal ions on the adsorption. Journal of Hazardous Materials, 2014, 264(1): 332–341CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jiawei Ju
    • 1
    • 2
  • Ruiping Liu
    • 1
  • Zan He
    • 1
    • 2
  • Huijuan Liu
    • 1
  • Xiwang Zhang
    • 3
  • Jiuhui Qu
    • 1
  1. 1.State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Department of Chemical EngineeringMonash UniversityClaytonAustralia

Personalised recommendations