Adsorption behavior of antibiotic in soil environment: a critical review

  • Shiliang Wang
  • Hui WangEmail author
Review Article


Antibiotics are used widely in human and veterinary medicine, and are ubiquitous in environment matrices worldwide. Due to their consumption, excretion, and persistence, antibiotics are disseminated mostly via direct and indirect emissions such as excrements, sewage irrigation, and sludge compost and enter the soil and impact negatively the natural ecosystem of soil. Most antibiotics are amphiphilic or amphoteric and ionize. A non-polar core combined with polar functional moieties makes up numerous antibiotic molecules. Because of various molecule structures, physicochemical properties vary widely among antibiotic compounds. Sorption is an important process for the environment behaviors and fate of antibiotics in soil environment. The adsorption process has decisive role for the environmental behaviors and the ultimate fates of antibiotics in soil. Multiply physicochemical properties of antibiotics induce the large variations of their adsorption behaviors. In addition, factors of soil environment such as the pH, ionic strength, metal ions, and organic matter content also strongly impact the adsorption processes of antibiotics. Review about adsorption of antibiotics on soil can provide a fresh insight into understanding the antibiotic-soil interactions. Therefore, literatures about the adsorption mechanisms of antibiotics in soil environment and the effects of environment factors on adsorption behaviors of antibiotics in soil are reviewed and discussed systematically in this review.


adsorption antibiotics environment factors soil 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wei Y M, Zhang Y, Xu J, Guo C S, Li L, Fan W H. Simultaneous quantification of several classes of antibiotics in water, sediments, and fish muscles by liquid chromatography-tandem mass spectrometry. Frontiers of Environmental Science & Engineering, 2014, 8(3): 357–371CrossRefGoogle Scholar
  2. 2.
    Li XW, Shi H C, Li K X, Zhang L, Gan Y P. Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China. Frontiers of Environmental Science & Engineering, 2014, 8(6): 888–894CrossRefGoogle Scholar
  3. 3.
    Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment: agents of subtle change. Environmental Health Perspectives, 1999, 107(6 Suppl 6): 907–938CrossRefGoogle Scholar
  4. 4.
    Golet E M, Xifra I, Siegrist H, Alder A C, Giger W. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environmental Science & Technology, 2003, 37(15): 3243–3249CrossRefGoogle Scholar
  5. 5.
    Halling-Sørensen B, Nors Nielsen S, Lanzky P F, Ingerslev F, Holten Lützhøft H C, Jørgensen S E. Occurrence, fate and effects of pharmaceutical substances in the environment-a review. Chemosphere, 1998, 36(2): 357–393CrossRefGoogle Scholar
  6. 6.
    Díaz-Cruz M S, López de Alda M J, Barceló D. Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TrAC Trends in Analytical Chemistry, 2003, 22(6): 340–351CrossRefGoogle Scholar
  7. 7.
    Watkinson A J, Murby E J, Costanzo S D. Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Research, 2007, 41(18): 4164–4176CrossRefGoogle Scholar
  8. 8.
    Boxall A B A, Kolpin D W, Halling-Sorensen B, Tolls J. Are veterinary medicines causing environmental risks? Environmental Science & Technology, 2003, 37(15): 286A–294ACrossRefGoogle Scholar
  9. 9.
    Göbel A, Thomsen A, McArdell C S, Joss A, Giger W. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science & Technology, 2005, 39(11): 3981–3989CrossRefGoogle Scholar
  10. 10.
    Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils-A review. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 145–167CrossRefGoogle Scholar
  11. 11.
    Alder A C, McArdell C S, Golet E M, Ibric S, Molnar E, Nipales N S, Giger W. Occurrence and fate of fluoroquinolone, macrolide, and sulfonamide antibiotics during wastewater treatment and in ambient waters in Switzerland. In: Daughton C G, Jones-Lepp T, Eds. Pharmaceuticals and Personal Care Products in the Environment: Scientific and Regulatory Issues. Washington D C.: American Chemical Society, 2001, 56–69CrossRefGoogle Scholar
  12. 12.
    Boxall A B A, Blackwell P, Cavallo R, Kay P, Tolls J. The sorption and transport of a sulphonamide antibiotic in soil systems. Toxicology Letters, 2002, 131(1–2): 19–28CrossRefGoogle Scholar
  13. 13.
    Hernando M D, Mezcua M, Fernández-Alba A R, Barceló D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 2006, 69(2): 334–342CrossRefGoogle Scholar
  14. 14.
    Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators, 2008, 8(1): 1–13CrossRefGoogle Scholar
  15. 15.
    Bailón-Pérez M I, Garcia-Campaña A M, Cruces-Blanco C, del Olmo Iruela M. Trace determination of β-lactam antibiotics in environmental aqueous samples using off-line and on-line preconcentration in capillary electrophoresis. Journal of Chromatography. A, 2008, 1185(2): 273–280CrossRefGoogle Scholar
  16. 16.
    Chen Z H, Deng S B, Wei H R, Wang B, Huang J, Yu G. Activated carbons and amine-modified materials for carbon dioxide capture-A review. Frontiers of Environmental Science & Engineering, 2013, 7(3): 326–340CrossRefGoogle Scholar
  17. 17.
    Li L, Xu J, Guo C S, Zhang Y. Removal of rhodamine B from aqueous solution by BiPO4 hierarchical architecture. Frontiers of Environmental Science & Engineering, 2013, 7(3): 382–387CrossRefGoogle Scholar
  18. 18.
    Peng Y, Li J H. Ammonia adsorption on graphene and graphene oxide: a first-principles study. Frontiers of Environmental Science & Engineering, 2013, 7(3): 403–411CrossRefGoogle Scholar
  19. 19.
    Zhou Q, Wang MQ, Li A M, Shuang C D, Zhang MC, Liu X H, Wu L Y. Preparation of a novel anion exchange group modified hypercrosslinked resin for the effective adsorption of both tetracycline and humic acid. Frontiers of Environmental Science & Engineering, 2013, 7(3): 412–419CrossRefGoogle Scholar
  20. 20.
    Kümmerer K. Antibiotics in the aquatic environment: a review-Part I. Chemosphere, 2009, 75(4): 417–434CrossRefGoogle Scholar
  21. 21.
    Petrović M, Hernando M D, Díaz-Cruz M S, Barceló D. Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review. Journal of Chromatography. A, 2005, 1067(1–2): 1–14CrossRefGoogle Scholar
  22. 22.
    Ikehata K, Naghashkar N J, El-Din M G. Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Science and Engineering, 2006, 28(6): 353–414CrossRefGoogle Scholar
  23. 23.
    Klavarioti M, Mantzavinos D, Kassinos D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International, 2009, 35(2): 402–417CrossRefGoogle Scholar
  24. 24.
    Erkel G. Biochemie der Antibiotika: Struktur-Biosynthese-Wirk Mechanismus. Heidelberg: Spektrum Akademischer Verlag, 1992, 389Google Scholar
  25. 25.
    Halling-Sørensen B, Sengeløv G, Tjørnelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Archives of Environmental Contamination and Toxicology, 2002, 42(3): 263–271CrossRefGoogle Scholar
  26. 26.
    Oka H, Ito Y, Matsumoto H. Chromatographic analysis of tetracycline antibiotics in foods. Journal of Chromatography. A, 2000, 882(1–2): 109–133CrossRefGoogle Scholar
  27. 27.
    Mitscher L A. The Chemistry of the Tetracycline Antibiotics. Basel: Marcel Dekker, 1978, 330Google Scholar
  28. 28.
    Ingerslev F, Halling-Sørensen B. Biodegradability properties of sulfonamides in activated sludge. Environmental Toxicology and Chemistry, 2000, 19(10): 2467–2473CrossRefGoogle Scholar
  29. 29.
    Wetzstein H G. Biologische abbaubarkeit der gyrasehemmer. Pharmazie in Unserer Zeit, 2001, 30(5): 450–457CrossRefGoogle Scholar
  30. 30.
    Xu Z, Zhang Q, Fang H H P. Applications of porous resin sorbents in industrial wastewater treatment and resource recovery. Critical Reviews in Environmental Science and Technology, 2003, 33(4): 363–389CrossRefGoogle Scholar
  31. 31.
    Xu W H, Zhang G, Zou S C, Li X D, Liu Y C. Determination of selected antibiotics in the Victoria Harbor and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. Environmental Pollution, 2007, 145(3): 672–679CrossRefGoogle Scholar
  32. 32.
    Sun Y, Huang H, Sun Y, Wang C, Shi X L, Hu H Y, Kameya T, Fujie K. Occurrence of estrogenic endocrine disrupting chemicals concern in sewage plant effluent. Frontiers of Environmental Science & Engineering, 2014, 8(1): 18–26CrossRefGoogle Scholar
  33. 33.
    Sui Q, Huang J, Lu S G, Deng S B, Wang B, Zhao WT, Qiu Z F, Yu G. Removal of pharmaceutical and personal care products by sequential ultraviolet and ozonation process in a full-scale wastewater treatment plant. Frontiers of Environmental Science & Engineering, 2014, 8(1): 62–68CrossRefGoogle Scholar
  34. 34.
    Rao K F, Li N, Ma M, Wang Z J. In vitro agonistic and antagonistic endocrine disrupting effects of organic extracts from waste water of different treatment processes. Frontiers of Environmental Science & Engineering, 2014, 8(1): 69–78CrossRefGoogle Scholar
  35. 35.
    Liu C L, Xu Y P, Ma M, Huang B B, Wu J D, Meng Q Y, Wang Z J, Gearheart R A. Evaluation of endocrine disruption and dioxin-like effects of organic extracts from sewage sludge in autumn in Beijing, China. Frontiers of Environmental Science & Engineering, 2014, 8(3): 433–440CrossRefGoogle Scholar
  36. 36.
    Höper H, Kues J, Nau H, Hamscher G. Eintrag und verbleib von tierarzneimittelwirkstoffen in Böden. Bodenschutz, 2002, 4(2): 141–148Google Scholar
  37. 37.
    Hamscher G, Sczesny S, Höper H, Nau H. Tierarzneimittel als persistente organische Kontaminanten von Böden. 10 Jahre Boden-Dauerbeobachtung in Niedersachsen, 2001, 10Google Scholar
  38. 38.
    Sengeløv G, Agerso Y, Halling-sørensen B, Baloda S B, Andersen J S, Jensen L B. Bacterial antibiotic resistance levels in Danish farmland as a result of treatment with pig manure slurry. Environment International, 2003, 28(7): 587–595CrossRefGoogle Scholar
  39. 39.
    Winckler C, Grafe A. Stoffeintrag Durch Tierarzneimittel und Pharmakologisch Wirksame Fuutterzusatzstoffe unter Besonderer Berücksichtigung von Tetrazyklinen. Berlin: UBA-Texte 44/00, 2000, 145Google Scholar
  40. 40.
    Schüller S. Anwendung antibiotisch wirksamer Substanzen beim Tier und Beurteilung der Umweltsicherheit entsprechender Produkte.3. Statuskolloquium ökotoxikologischer Forschungen in der Euregio Bodensee, 1998Google Scholar
  41. 41.
    Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China. Environmental Pollution, 2010, 158(9): 2992–2998CrossRefGoogle Scholar
  42. 42.
    Hamscher G, Abuquare S, Sczesny S, Höper H, Nau H. Determination of Tetracyclines in Soil and Water Samples from Agricultural Areas in Lower Saxony. Veldhoven, NL: Presented at Euro Residue IV, 2000Google Scholar
  43. 43.
    Kolpin D W, Meyer M T, Barber L B, Zaugg S D, Furlong E T, Buxton H T. A national reconnaissance for antibiotics and hormones in streams of the United States. Presented at SETAC 21st Annual Meeting in North America, Nashville, TN, November 12–16, 2000Google Scholar
  44. 44.
    Tolls J. Sorption of veterinary pharmaceuticals in soils: a review. Environmental Science & Technology, 2001, 35(17): 3397–3406CrossRefGoogle Scholar
  45. 45.
    Sassman S A, Lee L S. Sorption of three tetracyclines by several soils: assessing the role of pH and cation exchange. Environmental Science & Technology, 2005, 39(19): 7452–7459CrossRefGoogle Scholar
  46. 46.
    Jones A D, Bruland G L, Agrawal S G, Vasudevan D. Factors influencing the sorption of oxytetracycline to soils. Environmental Toxicology and Chemistry, 2005, 24(4): 761–770CrossRefGoogle Scholar
  47. 47.
    Pils J R V, Laird D A. Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, andclay-humic complexes. Environmental Science & Technology, 2007, 41(6): 1928–1933CrossRefGoogle Scholar
  48. 48.
    Nowara A, Burhenne J, Spiteller M. Binding of fluoroquinolone carboxylic acid derivatives to clay minerals. Journal of Agricultural and Food Chemistry, 1997, 45(4): 1459–1463CrossRefGoogle Scholar
  49. 49.
    Accinelli C, Koskonen W C, Becker J M, Sadowsky M J. Environmental fate of two sulfonamide antimicrobial agents in soils. Journal of Agricultural and Food Chemistry, 2007, 55(7): 2677–2682CrossRefGoogle Scholar
  50. 50.
    Rabølle M, Spliid N H. Sorption and mobility of metronidazole, olaquindox, oxytetracycline, and tylosin in soil. Chemosphere, 2000, 40(7): 715–722CrossRefGoogle Scholar
  51. 51.
    Figueroa R A, Mackay A A. Sorption of oxytetracycline to iron oxides and iron oxide-rich soils. Environmental Science & Technology, 2005, 39(17): 6664–6671CrossRefGoogle Scholar
  52. 52.
    Sithole B B, Guy R D. Models for oxytetracycline in aquatic environments. 1. Interaction with bentonite clay systems.Water, Air, and Soil Pollution, 1987, 32(3–4): 303–314CrossRefGoogle Scholar
  53. 53.
    Gruber V F, Halley B A, Hwang S G, Ku C C. Mobility of avermectin B1a in soil. Journal of Agricultural and Food Chemistry, 1990, 38(3): 886–890CrossRefGoogle Scholar
  54. 54.
    Kay P, Blackwell P A, Boxall A B. Fate of veterinary antibiotics in a macroporous tile drained clay soil. Environmental Toxicology and Chemistry, 2004, 23(5): 1136–1144CrossRefGoogle Scholar
  55. 55.
    Zhang H, Huang C H. Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, 2007, 66(8): 1502–1512CrossRefGoogle Scholar
  56. 56.
    Gu C, Karthikeyan K G. Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environmental Science & Technology, 2005, 39(23): 9166–9173CrossRefGoogle Scholar
  57. 57.
    Figueroa R A, Leonard A, Mackay A A. Modeling tetracycline antibiotic sorption to clays. Environmental Science & Technology, 2004, 38(2): 476–483CrossRefGoogle Scholar
  58. 58.
    MacKay A A, Canterbury B. Oxytetracycline sorption to organic matter by metal-bridging. Journal of Environmental Quality, 2005, 34(6): 1964–1971CrossRefGoogle Scholar
  59. 59.
    Wessels J M, Ford W E, Szymczak W, Schneider S. The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+: A spectroscopic study. Journal of Physical Chemistry B, 1998, 102(46): 9323–9331CrossRefGoogle Scholar
  60. 60.
    Gu C, Karthikeyan K G, Sibley S D, Pedersen J A. Complexation of the antibiotic tetracycline with humic acid. Chemosphere, 2007, 66(8): 1494–1501CrossRefGoogle Scholar
  61. 61.
    Sibley S D, Pedersen J A. Interaction of the macrolide antimicrobial clarithromycin with dissolved humic acid. Environmental Science & Technology, 2008, 42(2): 422–428CrossRefGoogle Scholar
  62. 62.
    Gao J, Pedersen J A. Adsorption of sulfonamide antimicrobial agents to clay minerals. Environmental Science & Technology, 2005, 39(24): 9509–9516CrossRefGoogle Scholar
  63. 63.
    Kahle M, Stamm C. Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin. Environmental Science & Technology, 2007, 41(1): 132–138CrossRefGoogle Scholar
  64. 64.
    Bialk HM, Pedersen J A. NMR investigation of enzymatic coupling of sulfonamide antimicrobials with humic substances. Environmental Science & Technology, 2008, 42(1): 106–112CrossRefGoogle Scholar
  65. 65.
    Yeager R L, Halley B A. Sorption/desorption of [14C]efrotomycin with soils. Journal of Agricultural and Food Chemistry, 1990, 38(3): 883–886CrossRefGoogle Scholar
  66. 66.
    Lützhøft H C H, Vaes W H J, Freidig A P, Halling-Sørensen B, Hermens J L M. 1-Octanol/water distribution coefficient of oxolinic acid: influence of pH and its relation to the interaction with dissolved organic carbon. Chemosphere, 2000, 40(7): 711–714CrossRefGoogle Scholar
  67. 67.
    Porubcan L S, Serna C J, White J L, Hem S L. Mechanism of adsorption of clindamycin and tetracycline by montmorillonite. Journal of Pharmaceutical Sciences, 1978, 67(8): 1081–1087CrossRefGoogle Scholar
  68. 68.
    Gu C, Karthikeyan K G. Interaction of tetracycline with aluminum and iron hydrous oxides. Environmental Science & Technology, 2005, 39(8): 2660–2667CrossRefGoogle Scholar
  69. 69.
    Tolls J, Gebbink W, Cavallo R. pH-dependence of sulfonamide antibiotic sorption: data and model evaluation. SETAC Europe 12th Annual Meeting, Vienna, Austria. Madison: Amer Soc Agronomy, 2002, 12–16Google Scholar
  70. 70.
    Sithole B B, Guy R D. Models for oxytetracycline in aquatic environments. 2. Interactions with humic substances. Water, Air, and Soil Pollution, 1987, 32(3–4): 315–321CrossRefGoogle Scholar
  71. 71.
    Loke M L, Tjørnelund J, Halling-Sørensen B. Determination of the distribution coefficient (logKd) of oxytetracycline, tylosin A, olaquindox and metronidazole in manure. Chemosphere, 2002, 48(3): 351–361CrossRefGoogle Scholar
  72. 72.
    Lertpaitoonpan W, Ong S K, Moorman T B. Effect of organic carbon and pH on soil sorption of sulfamethazine. Chemosphere, 2009, 76(4): 558–564CrossRefGoogle Scholar
  73. 73.
    Zhang J Q, Dong Y H. Influence of strength and special of cation on adsorption of norfloxacin in typical soils of China. Environmental Sciences, 2007, 28(10): 2383–2388 (in Chinese)Google Scholar
  74. 74.
    Picó Y, Andreu V. Fluoroquinolones in soil-risks and challenges. Analytical and Bioanalytical Chemistry, 2007, 387(4): 1287–1299CrossRefGoogle Scholar
  75. 75.
    Wang Y J, Jia D A, Sun R J, Zhu H W, Zhou D M. Adsorption and cosorption of tetracycline and copper(II) on montmorillonite as affected by solution pH. Environmental Science & Technology, 2008, 42(9): 3254–3259CrossRefGoogle Scholar
  76. 76.
    Marengo J R, Kok R A, O’Brien K, Velagaleti R R, Stamm J M. Aerobic biodegradation of (14C)-sarafloxacin hydrochloride in soil. Environmental Toxicology and Chemistry, 1997, 16(3): 462–471CrossRefGoogle Scholar
  77. 77.
    Kulshrestha P, Giese R F Jr, Aga D S. Investigating the molecular interactions of oxytetracycline in clay and organic matter: insights on factors affecting its mobility in soil. Environmental Science & Technology, 2004, 38(15): 4097–4105CrossRefGoogle Scholar
  78. 78.
    Holten Lűtzhøft H C, Vaes Wouter H J, Freidig Andreas P, Halling-Sørensen B, Hermens Joop L M. Influence of pH and other modifying factors on the distribution behavior of 4-quinolones to solid phases and humic acids studied by “negligible depletion” SPME-HPLC. Environmental Science & Technology, 2000, 34(23): 4989–4994CrossRefGoogle Scholar
  79. 79.
    Carrasquillo A J, Bruland G L, MacKay A A, Vasudevan D. Sorption of ciprofloxacin and oxytetracycline zwitterions to soils and soil minerals: Influence of compound structure. Environmental Science & Technology, 2008, 42(20): 7634–7642CrossRefGoogle Scholar
  80. 80.
    Zhang M K, Wang L P, Zheng S A. Adsorption and transport characteristics of two exterior-source antibiotics in some agricultural soils. Acta Ecologica Sinica, 2008, 28(2): 761–766 (in Chinese)Google Scholar
  81. 81.
    Ter Laak T L, Gebbink W A, Tolls J. Estimation of soil sorption coefficients of veterinary pharmaceuticals from soil properties. Environmental Toxicology and Chemistry, 2006, 25(4): 933–941CrossRefGoogle Scholar
  82. 82.
    Thiele S, Seibicke T, Leinweber P. Sorption of sulfonamide antibiotic pharmaceuticals in soil particle size fractions. SETAC Europe 12th Annual Meeting, Vienna, Austria. Madison: Amer Soc Agronomy, 2002Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Joint Laboratory on Environmental Simulation and Pollution Control, School of EnvironmentTsinghua UniversityBeijingChina

Personalised recommendations