Skip to main content
Log in

Online single particle analysis of chemical composition and mixing state of crop straw burning particles: from laboratory study to field measurement

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Fresh straw burning (SB) particles were generated in the laboratory by the combustion of rice straw and corn straw. The chemical composition and mixing state of the fresh SB particles were investigated by an Aerosol Time-of-Flight Mass Spectrometer (ATOFMS). Based on the mass spectral patterns, the SB particles were clustered into four major types: Salt, Organic Carbon (OC), Elemental Carbon (EC), and internally mixed particles of EC and OC (EC-OC). In addition, particles containing ash, polycyclic aromatic hydrocarbons, heavy metals or nicotine were also observed. Physical and chemical changes of the SB particles immediately after the emission were analyzed with highly time-resolved data. During the aging processes, the average particle size increased steadily. Freshly emitted organic compounds were gradually oxidized to more oxygenated compounds in the OC-containing particles. Meanwhile, an important displacement reaction (2KCl + SO 2−4 → K2SO4 + 2Cl) was observed. The marker ions for SB particles were optimized and applied to identify the SB particles in the ambient atmosphere. The fluctuation of the number fraction of ambient SB particles sorted by ATOFMS agrees well with that of water soluble K+ measured by an online ion chromatography, demonstrating that the optimized marker ions could be good tracers for SB particles in field measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crutzen P J, Andreae M O. Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science, 1990, 250(4988): 1669–1678

    Article  CAS  Google Scholar 

  2. Hobbs P V, Reid J S, Kotchenruther R A, Ferek R J, Weiss R. Direct radiative forcing by smoke from biomass burning. Science, 1997, 275(5307): 1776–1778

    Article  CAS  Google Scholar 

  3. Watson J G. Visibility: science and regulation. Journal of the Air & Waste Management Association, 2002, 52(6): 628–713

    Article  Google Scholar 

  4. Streets D G, Yarber K F, Woo J H, Carmichael G R. Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions. Global Biogeochemical Cycles, 2003, 17(4): 1099

    Article  CAS  Google Scholar 

  5. Gadde B, Bonnet S, Menke C, Garivait S. Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. Environmental Pollution, 2009, 157(5): 1554–1558

    Article  CAS  Google Scholar 

  6. Ryu S Y, Kim J E, Zhuanshi H, Kim Y J, Kang G U. Chemical composition of post-harvest biomass burning aerosols in Gwangju, Korea. Journal of the Air & Waste Management Association, 2004, 54(9): 1124–1137 doi:10.1080/10473289.2004.10471018

    Article  CAS  Google Scholar 

  7. Zhang H F, Ye X N, Cheng T T, Chen J M, Yang X, Wang L, Zhang R Y. A laboratory study of agricultural crop residue combustion in China: emission factors and emission inventory. Atmospheric Environment, 2008, 42(36): 8432–8441

    Article  CAS  Google Scholar 

  8. Cao G L, Zhang X Y, Wang Y Q, Zheng F C. Estimation of emissions from field burning of crop straw in China. Chinese Science Bulletin, 2008, 53(5): 784–790

    Article  CAS  Google Scholar 

  9. Qin Y, Xie S D. Historical estimation of carbonaceous aerosol emissions from biomass open burning in China for the period 1990–2005. Environmental Pollution, 2011, 159(12): 3316–3323

    Article  CAS  Google Scholar 

  10. Li X, Wang S, Duan L, Hao J, Li C, Chen Y, Yang L. Particulate and trace gas emissions from open burning of wheat straw and corn stover in China. Environmental Science & Technology, 2007, 41(17): 6052–6058

    Article  CAS  Google Scholar 

  11. Reid J S, Koppmann R, Eck T F, Eleuterio D P. A review of biomass burning emissions, Part II: Intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics, 2005, 5(3): 799–825

    Article  CAS  Google Scholar 

  12. Healy R M, Hellebust S, Kourtchev I, Allanic A, O’Connor I P, Bell J M, Healy D A, Sodeau J R, Wenger J C. Source apportionment of PM2.5 in Cork Harbour, Ireland using a combination of single particle mass spectrometry and quantitative semi-continuous measurements. Atmospheric Chemistry and Physics, 2010, 10(19): 9593–9613

    Article  CAS  Google Scholar 

  13. Zauscher MD, Wang Y, Moore MJK, Gaston C J, Prather K A. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires. Environmental Science & Technology, 2013, 47(14): 7633–7643

    Article  CAS  Google Scholar 

  14. Pratt K A, Murphy S M, Subramanian R, DeMott P J, Kok G L, Campos T, Rogers D C, Prenni A J, Heymsfield A J, Seinfeld J H, Prather K A. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes. Atmospheric Chemistry and Physics, 2011, 11(24): 12549–12565

    Article  CAS  Google Scholar 

  15. Prather K A, Nordmeyer T, Salt K. Real-time characterization of individual aerosol-particles using time-of-flight mass-spectrometry. Analytical Chemistry, 1994, 66(9): 1403–1407

    Article  CAS  Google Scholar 

  16. Yang F, Chen H, Wang X N, Yang X, Du J F, Chen J M. Single particle mass spectrometry of oxalic acid in ambient aerosols in Shanghai: mixing state and formation mechanism. Atmospheric Environment, 2009, 43(25): 3876–3882

    Article  CAS  Google Scholar 

  17. Wang X, Williams B J, Wang X, Tang Y, Huang Y, Kong L, Yang X, Biswas P. Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace. Atmospheric Chemistry and Physics, 2013, 13(21): 10919–10932

    Article  CAS  Google Scholar 

  18. Bi X H, Zhang G H, Li L, Wang X M, Li M, Sheng G Y, Fu J M, Zhou Z. Mixing state of biomass burning particles by single particle aerosol mass spectrometer in the urban area of PRD, China. Atmospheric Environment, 2011, 45(20): 3447–3453

    Article  CAS  Google Scholar 

  19. Silva P J, Liu D Y, Noble C A, Prather K A. Size and chemical characterization of individual particles resulting from biomass burning of local Southern California species. Environmental Science & Technology, 1999, 33(18): 3068–3076

    Article  CAS  Google Scholar 

  20. Pagels J, Dutcher D D, Stolzenburg M R, McMurry P H, Gälli M E, Gross D S. Fine-particle emissions from solid biofuel combustion studied with single-particle mass spectrometry: Identification of markers for organics, soot, and ash components. Journal of Geophysical Research, D, Atmospheres, 2013, 118(2): 859–870

    Article  CAS  Google Scholar 

  21. Song X H, Hopke P K, Fergenson D P, Prather K A. Classification of single particles analyzed by ATOFMS using an artificial neural network, ART-2A. Analytical Chemistry, 1999, 71(4): 860–865

    Article  CAS  Google Scholar 

  22. Gao S, Hegg D A, Hobbs P V, Kirchstetter T W, Magi B I, Sadilek M. Water-soluble organic components in aerosols associated with savanna fires in southern Africa: identification, evolution, and distribution. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D13): 8491

    Article  CAS  Google Scholar 

  23. McMeeking G R, Kreidenweis S M, Baker S, Carrico C M, Chow J C, Collett J L, Hao WM, Holden A S, Kirchstetter TW, Malm WC, Moosmuller H, Sullivan A P, Wold C E. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. Journal of Geophysical Research, D, Atmospheres, 2009, 114: D19210

    Article  CAS  Google Scholar 

  24. Hudson P K, Murphy DM, Cziczo D J, Thomson D S, de Gouw J A, Warneke C, Holloway J, Jost J R, Hubler G. Biomass-burning particle measurements: characteristic composition and chemical processing. Journal of Geophysical Research, D, Atmospheres, 2004, 109(D23): D23S27

    Article  CAS  Google Scholar 

  25. Pósfai M, Simonics R, Li J, Hobbs P V, Buseck P R. Individual aerosol particles from biomass burning in southern Africa: 1. Compositions and size distributions of carbonaceous particles. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D13): 8483

    Article  CAS  Google Scholar 

  26. Kulmala M, Dal Maso M, Mäkelä J M, Pirjola L, Väkevä M, Aalto P, Miikkulainen P, Hämeri K, O’Dowd C D. On the formation, growth and composition of nucleation mode particles. Tellus. Series B, Chemical and Physical Meteorology, 2001, 53(4): 479–490

    Article  Google Scholar 

  27. Hennigan C J, Sullivan A P, Collett J L Jr, Robinson A L. Levoglucosan stability in biomass burning particles exposed to hydroxyl radicals. Geophysical Research Letters, 2010, 37(9): L09806

    Article  CAS  Google Scholar 

  28. Kessler S H, Smith J D, Che D L, Worsnop D R, Wilson K R, Kroll J H. Chemical sinks of organic aerosol: kinetics and products of the heterogeneous oxidation of erythritol and levoglucosan. Environmental Science & Technology, 2010, 44(18): 7005–7010

    Article  CAS  Google Scholar 

  29. Li J, Pósfai M, Hobbs P V, Buseck P R. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research, D, Atmospheres, 2003, 108(D13): 8484

    Article  CAS  Google Scholar 

  30. Reid J S, Hobbs P V. Physical and optical properties of young smoke from individual biomass fires in Brazil. Journal of Geophysical Research, D, Atmospheres, 1998, 103(D24): 32013–32030

    Article  Google Scholar 

  31. Kreidenweis S M, Remer L A, Bruintjes R, Dubovik O. Smoke aerosol from biomass burning in Mexico: hygroscopic smoke optical model. Journal of Geophysical Research, D, Atmospheres, 2001, 106(D5): 4831–4844

    Article  CAS  Google Scholar 

  32. Yokelson R J, Crounse J D, DeCarlo P F, Karl T, Urbanski S, Atlas E, Campos T, Shinozuka Y, Kapustin V, Clarke A D, Weinheimer A, Knapp D J, Montzka D D, Holloway J, Weibring P, Flocke F, Zheng W, Toohey D, Wennberg P O, Wiedinmyer C, Mauldin L, Fried A, Richter D, Walega J, Jimenez J L, Adachi K, Buseck P R, Hall S R, Shetter R. Emissions from biomass burning in the Yucatan. Atmospheric Chemistry and Physics, 2009, 9(15): 5785–5812

    Article  CAS  Google Scholar 

  33. Pekney N J, Davidson C I, Bein K J, Wexler A S, Johnston M V. Identification of sources of atmospheric PM at the Pittsburgh Supersite, Part I: Single particle analysis and filter-based positive matrix factorization. Atmospheric Environment, 2006, 40(Suppl. 2): 411–423

    Article  CAS  Google Scholar 

  34. Bein K J, Zhao Y, Johnston M V, Wexler A S. Identification of sources of atmospheric PM at the Pittsburgh Supersite—Part III: Source characterization. Atmospheric Environment, 2007, 41(19): 3974–3992

    Article  CAS  Google Scholar 

  35. Du H, Kong L, Cheng T, Chen J, Du J, Li L, Xia X, Leng C, Huang G. Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmospheric Environment, 2011, 45(29): 5131–5137

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, J., Lu, X., Wang, X. et al. Online single particle analysis of chemical composition and mixing state of crop straw burning particles: from laboratory study to field measurement. Front. Environ. Sci. Eng. 10, 244–252 (2016). https://doi.org/10.1007/s11783-015-0768-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-015-0768-z

Keywords

Navigation