Skip to main content

Advertisement

Log in

Ecotoxicity assessment of soil irrigated with domestic wastewater using different extractions

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The toxicity of soil irrigated with treated domestic wastewater (site A) and untreated gray wastewater (site B) were investigated. Soil extracts were prepared using distilled water, acid solvent (0.1 mol·L−1 HCl), and organic solvent (acetone:petroleum ether: cyclohexane = 1:1:1) to understand the type of pollutants responsible for the ecotoxicity associated with wastewater irrigation. The soil toxicity was assessed using a luminescence inhibition assay with Vibrio fischeri for acute toxicity, a micronucleus assay with Vicia faba root tips and a single cell gel electrophoresis assay of mice lymphocytes for genotoxicity. The physicochemical properties and the heavy metal (HM) contents of the irrigated soil were also analyzed. The results indicated that the wastewater irrigation at site A had no effects on the soil properties. With the exception of Pb, Zn, Fe, and Mn, the accumulation of HMs (Cu, Ni, and Cr) occurred. However, the irrigation at site A did not result in obvious acute toxicity or genotoxicity in the soil. The soil properties changed greatly, and HMs (Cu, Ni, and Cr) accumulated in site B. There were significant increases in the acute toxic and genotoxic effects in the soils from site B. The ecotoxicity in site B came primarily from organic-extractable pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Castro E, Mañas M P, Heras J D L. Effects of wastewater irrigation on soil properties and turfgrass growth. Water Science & Technology, 2011, 63(8): 1678–1688

    Article  CAS  Google Scholar 

  2. Abdu N, Abdulkadir A, Agbenin J O, Buerkert A. Vertical distribution of heavy metals in wastewater irrigated vegetable garden soils of three West African cities. Nutrient Cycling in Agroecosystems, 2011, 89(3): 387–397

    Article  CAS  Google Scholar 

  3. Gibson R, Durán-Álvarez J C, Estrada K L, Chávez A, Jiménez Cisneros B. Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico. Chemosphere, 2010, 81(11): 1437–1445

    Article  CAS  Google Scholar 

  4. Zeng L, Wang T, Han W, Yuan B, Liu Q, Wang Y, Jiang G. Spatial and vertical distribution of short chain chlorinated paraffins in soils from wastewater irrigated farmlands. Environmental Science & Technology, 2011, 45(6): 2100–2106

    Article  CAS  Google Scholar 

  5. Tarchouna L G, Merdy P, Raynaud M, Pfeifer H R, Lucas Y. Effects of long-term irrigation with treated wastewater. Part I: Evolution of soil physico-chemical properties. Applied Geochemistry, 2010, 25(11): 1703–1710

    Article  Google Scholar 

  6. Aleem A, Malik A. Genotoxic hazards of long-term application of wastewater on agricultural soil. Mutation Research, 2003, 538(1–2): 145–154

    Article  CAS  Google Scholar 

  7. Song Y F, Gong P, Wilke B M, Zhang W, Song X Y, Sun T H, Ackland M L. Genotoxicity assessment of soils from wastewater irrigation areas and bioremediation sites using the Vicia faba root tip micronucleus assay. Journal of Environmental Monitoring, 2007, 9(2): 182–186

    Article  CAS  Google Scholar 

  8. Yu G, Xiao R, Wang D, Zhou J, Wang Z. Assessing the ecological risk of soil irrigated with wastewater using in vitro cell bioassays. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2008, 43(14): 1618–1627

    Article  CAS  Google Scholar 

  9. Song Y F, Wilke B M, Song X Y, Gong P, Zhou Q X, Yang G F. Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metals (HMs) as well as their genotoxicity in soil after long-term wastewater irrigation. Chemosphere, 2006, 65(10): 1859–1868

    Article  CAS  Google Scholar 

  10. Qiao M, Chen Y, Wang C X, Wang Z, Zhu Y G. DNA damage and repair process in earthworm after in-vivo and in vitro exposure to soils irrigated by wastewaters. Environmental Pollution, 2007, 148(1): 141–147

    Article  CAS  Google Scholar 

  11. Courchesne F, Kruyts N, Legrand P. Labile zinc concentration and free copper ion activity in the rhizosphere of forest soils. Environmental Toxicology and Chemistry, 2006, 25(3): 635–642

    Article  CAS  Google Scholar 

  12. Lagomarsino A, Mench M, Marabottini R, Pignataro A, Grego S, Renella G, Stazi S R. Copper distribution and hydrolase activities in a contaminated soil amended with dolomitic limestone and compost. Ecotoxicology and Environmental Safety, 2011, 74(7): 2013–2019

    Article  CAS  Google Scholar 

  13. Cabrera G L, Rodriguez D M G. Genotoxicity of soil from farmland irrigated with wastewater using three plant bioassays. Mutation Research, 1999, 426(2): 211–214

    Article  CAS  Google Scholar 

  14. Ehrlichmann H, Dott W, Eisentraeger A. Assessment of the waterextractable genotoxic potential of soil samples from contaminated sites. Ecotoxicology and Environmental Safety, 2000, 46(1): 73–80

    Article  CAS  Google Scholar 

  15. China Environmental Protection Bureau. Standard Methods for Examination of Water and Wastewater. 4th ed. Beijing: Chinese Environmental Science Press, 2004 (in Chinese)

    Google Scholar 

  16. Rusjan D, Strlič M, Pucko D, Korošec-Koruza Z. Copper accumulation regarding the soil characteristics in Sub-Mediterranean vine yards of Slovenia. Geoderma, 2007, 141(1–2): 111–118

    Article  CAS  Google Scholar 

  17. Liang W, Chen L, Sui L, Yu J, Wang L, Shi H. Assessment of detoxification of microcystin extracts using electrochemical oxidation. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2011, 46(10): 1102–1112

    Article  CAS  Google Scholar 

  18. Majer B J, Grummt T, Uhl M, Knasmüller S. Use of plant bioassays for the detection of genotoxins in the aquatic environment. Acta Hydrochimica et Hydrobiologica, 2005, 33(1): 45–55

    Article  CAS  Google Scholar 

  19. Marcato-Romain C E, Guiresse M, Cecchi M, Cotelle S, Pinelli E. New direct contact approach to evaluate soil genotoxicity using the Vicia faba micronucleus test. Chemosphere, 2009, 77(3): 345–350

    Article  CAS  Google Scholar 

  20. Końca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Góźdź S, Koza Z, Wojcik A. A cross-platform public domain PC imageanalysis program for the comet assay. Mutation Research, 2003, 534(1–2): 15–20

    Google Scholar 

  21. Xu J, Wu L, Chang A C, Zhang Y. Impact of long-term reclaimed wastewater irrigation on agricultural soils: a preliminary assessment. Journal of Hazardous Materials, 2010, 183(1–3): 780–786

    Article  CAS  Google Scholar 

  22. Yao H, Zhang S, Xue X, Yang J, Hu K, Yu X. Influence of the sewage irrigation on the agricultural soil properties in Tongliao City, China. Frontiers of Environmental Science & Engineering, 2013, 7(2): 273–280

    Article  Google Scholar 

  23. Singh A, Sharma R K, Agrawal M, Marshall F M. Risk assessment of heavy metal toxicity through contaminated vegetables from waste water irrigated area of Varanasi, India. Tropical Ecology, 2010, 51(2S): 375–387

    CAS  Google Scholar 

  24. Duan R, Fedler C B, Sheppard C D. Field study of salt balance of a land application system. Water, Air, & Soil Pollution, 2011, 215(1–4): 43–54

    Article  CAS  Google Scholar 

  25. Fonseca A, Herpin U, Paula A M, Victória R L, Melfi A J. Agricultural use of treated sewage effluents: agronomic and environmental implications and perspectives for Brazil. Scientia Agricola, 2007, 64(2): 194–209

    Article  Google Scholar 

  26. Girotti S, Ferri E N, Fumo M G, Maiolini E. Monitoring of environmental pollutants by bioluminescent bacteria. Analytica Chimica Acta, 2008, 608(1): 2–29

    Article  CAS  Google Scholar 

  27. Acheson C M, Zhou Q, Shan Y, Sayles G D, Kupferle M J. Comparing the solid phase and saline extract Microtox assays for two polycyclic aromatic hydrocarbon-contaminated soils. Environmental Toxicology and Chemistry, 2004, 23(2): 245–251

    Article  CAS  Google Scholar 

  28. Shen K, Shen C, Lu Y, Tang X, Zhang C, Chen X, Shi J, Lin Q, Chen Y. Hormesis response of marine and freshwater luminescent bacteria to metal exposure. Biological Research, 2009, 42(2): 183–187

    Article  CAS  Google Scholar 

  29. Wang L J, Liu S S, Yuan J, Liu H L. Remarkable hormesis induced by 1-ethyl-3-methyl imidazolium tetrafluoroborate on Vibrio qinghaiensis sp.-Q67. Chemosphere, 2011, 84(10): 1440–1445

    Article  CAS  Google Scholar 

  30. Frische T, Höper H. Soil microbial parameters and luminescent bacteria assays as indicators for in situ bioremediation of TNT-contaminated soils. Chemosphere, 2003, 50(3): 415–427

    Article  Google Scholar 

  31. Niemi R M, Heiskanen I, Ahtiainen J H, Rahkonen A, Mäntykoski K, Welling L, Laitinen P, Ruuttunen P. Microbial toxicity and impacts on soil enzyme activities of pesticides used in potato cultivation. Applied Soil Ecology, 2009, 41(3): 293–304

    Article  Google Scholar 

  32. Tang J, Wang M, Wang F, Sun Q, Zhou Q. Eco-toxicity of petroleum hydrocarbon contaminated soil. Journal of Environmental Sciences-China, 2011, 23(5): 845–851

    Article  CAS  Google Scholar 

  33. Chen Y, Wang C, Wang Z, Huang S. Assessment of the contamination and genotoxicity of soil irrigated with wastewater. Plant and Soil, 2004, 261(1–2): 189–196

    Article  CAS  Google Scholar 

  34. Lin D, Zhou Q, Xie X, Liu Y. Potential biochemical and genetic toxicity of triclosan as an emerging pollutant on earthworms (Eisenia fetida). Chemosphere, 2010, 81(10): 1328–1333

    Article  CAS  Google Scholar 

  35. Zhu J, Zhao Z Y, Lu Y T. Evaluation of genotoxicity of combined soil pollution by cadmium and phenanthrene on earthworm. Journal of Environmental Sciences-China, 2006, 18(6): 1210–1215

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Corresponding author

Correspondence to Wenyan Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, W., Sui, L., Zhao, Y. et al. Ecotoxicity assessment of soil irrigated with domestic wastewater using different extractions. Front. Environ. Sci. Eng. 9, 685–693 (2015). https://doi.org/10.1007/s11783-014-0752-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-014-0752-z

Keywords