Skip to main content
Log in

Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid) and their antimicrobial application in water treatment

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

A novel hybrid material, Cu-PAA/MWCNTs (copper nanoparticles deposited multiwalled carbon nanotubes with poly (acrylic acid) as dispersant, was prepared and expected to obtain a more effective and well-dispersed disinfection material for water treatment. X-ray energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), the X-ray fluorescence (XRF), X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FT-IR), Raman spectroscopy, and thermal gravimetric analyzer (TGA) were used to characterize the Cu-PAA/MWCNTs. Escherichia coli (E. coil) was employed as the target bacteria. The cell viability determination and fluorescence imaging results demonstrated that Cu-PAA/MWCNTs possessed strong antimicrobial ability on E. coil. The deposited Cu was suggested to play an important role in the antimicrobial action of Cu-PAA/MWCNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. McDorman K S, Pachkowski B F, Nakamura J, Wolf D C, Swenberg J A. Oxidative DNA damage from potassium bromate exposure in Long-Evans rats is not enhanced by a mixture of drinking water disinfection by-products. Chemico-Biological Interactions, 2005, 152(2–3): 107–117

    Article  CAS  Google Scholar 

  2. Krasner S W, Weinberg H S, Richardson S D, Pastor S J, Chinn R, Sclimenti M J, Onstad G D, Jr A D. Thruston. Occurrence of a new generation of disinfection byproducts. Environmental Science & Technology, 2006, 40(23): 7175–7185

    Article  CAS  Google Scholar 

  3. Hua G H, Reckhow D A. Comparison of disinfection byproduct formation from chlorine and alternative disinfectants. Water Research, 2007, 41(8): 1667–1678

    Article  CAS  Google Scholar 

  4. Gonçalves A G, Figueiredo J L, Órfão J J M, Pereira M F R. Influence of the surface chemistry of multi-walled carbon nanotubes on their activity as ozonation catalysts. Carbon, 2010, 48(15): 4369–4381

    Article  Google Scholar 

  5. Sui M H, Xing S C, Sheng L, Huang S H, Guo H G. Heterogeneous catalytic ozonation of ciprofloxacin in water with carbon nanotube supported manganese oxides as catalyst. Journal of Hazardous Materials, 2012, 227–228(5): 227–236

    Article  Google Scholar 

  6. Oleszczuk P, Pan B, Xing B S. Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes. Environmental Science & Technology, 2009, 43(24): 9167–9173

    Article  CAS  Google Scholar 

  7. Upadhyayula V K K, Deng S G, Mitchell M C, Smith G B. Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Science of the Total Environment, 2009, 408(1): 1–13

    Article  CAS  Google Scholar 

  8. Kang S, Pinault M, Pfefferle L D, Elimelech M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir, 2007, 23(17): 8670–8673

    Article  CAS  Google Scholar 

  9. Kang S, Herzberg M, Rodrigues D F, Elimelech M. Antibacterial effects of carbon nanotubes: size does matter! Langmuir, 2008, 24(13): 6409–6413

    Article  CAS  Google Scholar 

  10. Kang S, Mauter M S, Elimelech M. Microbial cytotoxicity of carbon-based nanomaterials: implications for river water and wastewater effluent. Environmental Science & Technology, 2009, 43(7): 2648–2653

    Article  CAS  Google Scholar 

  11. Liu S, Wei L, Hao L, Fang N, Chang M W, Xu R, Yang Y H, Chen Y. Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano, 2009, 3(12): 3891–3902

    Article  CAS  Google Scholar 

  12. Alpatova A L, Shan W Q, Babica P, Upham B L, Rogensues A R, Masten S J, Drown E, Mohanty A K, Alocilja E C, Tarabara V V. Single-walled carbon nanotubes dispersed in aqueous media via non-covalent functionalization: effect of dispersant on the stability, cytotoxicity, and epigenetic toxicity of nanotube suspensions. Water Research, 2010, 44(2): 505–520

    Article  CAS  Google Scholar 

  13. Bai Y, Park I S, Lee S J, Bae T S, Watari F, Uo M, Lee M H. Aqueous dispersion of surfactant-modified multiwalled carbon nanotubes and their application as an antibacterial agent. Carbon, 2011, 49(11): 3663–3671

    Article  CAS  Google Scholar 

  14. Rausch J, Zhuang R C, Mäder E. Surfactant assisted dispersion of functionalized multi-walled carbon nanotubes in aqueous media. Composites Part A: Applied Science and Manufacturing, 2010, 41(9): 1038–1046

    Article  Google Scholar 

  15. Bai Y, Lin D, Wu F, Wang Z, Xing B. Adsorption of Triton X-series surfactants and its role in stabilizing multi-walled carbon nanotube suspensions. Chemosphere, 2010, 79(4): 362–367

    Article  CAS  Google Scholar 

  16. Islam M F, Rojas E, Bergey D M, Johnson A T, Yodh A G. High weight fraction surfactant solubilization of single-wall carbon nanotubes in Water. Nano Letters, 2003, 3(2): 269–273

    Article  CAS  Google Scholar 

  17. Gao C, Li W W, Jin Y Z, Kong H. Facile and large-scale synthesis and characterization of carbon nanotube/silver nanocrystal nanohybrids. Nanotechnology, 2006, 17(12): 2882–2890

    Article  CAS  Google Scholar 

  18. Ruparelia J P, Chatterjee A K, Duttagupta S P, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, 2008, 4(3): 707–716

    Article  CAS  Google Scholar 

  19. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Zacheo T B, D’Alessio M, Zambonin P G, Traversa E. Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chemistry of Materials, 2005, 17(21): 5255–5262

    Article  CAS  Google Scholar 

  20. Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E.coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 2004, 275(1): 177–182

    Article  CAS  Google Scholar 

  21. Cho K H, Park J E, Osaka T, Park S G. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 2005, 51(5): 956–960

    Article  CAS  Google Scholar 

  22. Li Q L, Mahendra S, Lyon D Y, Brunet L, Liga M V, Li D, Alvarez P J. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Research, 2008, 42(18): 4591–4602

    Article  CAS  Google Scholar 

  23. Kim J A, Seong D G, Kang T J, Youn J R. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon, 2006, 44(10): 1898–1905

    Article  CAS  Google Scholar 

  24. Liu Q M, Zhou D B, Yamamoto Y, Ichino R, Okido M. Preparation of Cu nanoparticles with NaBH4 by aqueous reduction method. Transactions of Nonferrous Metals Society of China, 2012, 22(1): 117–123

    Article  CAS  Google Scholar 

  25. Thomas Y O, Lulves W J, Kraft A A. A convenient surface plate method for bacteriological examination of poultry. Journal of Food Science, 1981, 46(6): 1951–1952

    Article  Google Scholar 

  26. Park B K, Jeong S, Kim D, Moon J, Lim S, Kim J S. Synthesis and size control of monodisperse copper nanoparticles by polyol method. Journal of Colloid and Interface Science, 2007, 311(2): 417–424

    Article  CAS  Google Scholar 

  27. Jiang P, Li S Y, Xie S S, Gao Y, Song L. Machinable long PVPstabilized silver nanowires. Chemistry (Weinheim an der Bergstrasse, Germany), 2004, 10(19): 4817–4821

    CAS  Google Scholar 

  28. Balachandra A M, Dai J H, Bruening M L. Enhancing the aniontransport selectivity of multilayer polyelectrolyte membranes by templating with Cu2+. Macromolecules, 2002, 35(8): 3171–3178

    Article  CAS  Google Scholar 

  29. Shen J F, Hu Y Z, Li C, Qin C, Shi M, Ye M X. Layer-by-layer selfassembly of graphene nanoplatelets. Langmuir, 2009, 25(11): 6122–6128

    Article  CAS  Google Scholar 

  30. Cohen J J. Apoptosis. Immunology Today, 1993, 14(3): 126–130

    Article  CAS  Google Scholar 

  31. Jia G, Wang H F, Yan L, Wang X, Pei R J, Yan T, Zhao Y L, Guo X B. Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science & Technology, 2005, 39(5): 1378–1383

    Article  CAS  Google Scholar 

  32. Narayan R J, Berry C J, Brigmon R L. Structural and biological properties of carbon nanotube composite films. Materials Science and Engineering B, 2005, 123(2): 123–129

    Article  Google Scholar 

  33. Kang S, Mauter M S, Elimelech M. Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environmental Science & Technology, 2008, 42(19): 7528–7534

    Article  CAS  Google Scholar 

  34. Qi L F, Xu Z R, Jiang X, Hu C H, Zou X F. Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 2004, 339(16): 2693–2700

    Article  CAS  Google Scholar 

  35. Ramadan A M. Structural and biological aspects of copper (II) complexes with 2-methyl-3-amino-(3H)-quinazolin-4-one. Journal of Inorganic Biochemistry, 1997, 65(3): 183–189

    Article  CAS  Google Scholar 

  36. Meng H, Chen Z, Xing G, Yuan H, Chen C, Zhao F, Zhang C, Zhao Y. Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nano-copper particles. Toxicology Letters, 2007, 175(1–3): 102–110

    Article  CAS  Google Scholar 

  37. Griffitt R J, Luo J, Gao J, Bonzongo J C, Barber D S. Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environmental Toxicology and Chemistry, 2008, 27(9): 1972–1978

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghao Sui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheng, L., Huang, S., Sui, M. et al. Deposition of copper nanoparticles on multiwalled carbon nanotubes modified with poly (acrylic acid) and their antimicrobial application in water treatment. Front. Environ. Sci. Eng. 9, 625–633 (2015). https://doi.org/10.1007/s11783-014-0711-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-014-0711-8

Keywords