Skip to main content
Log in

A review of atmospheric mercury emissions, pollution and control in China

  • Feature Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Mercury, as a global pollutant, has significant impacts on the environment and human health. The current state of atmospheric mercury emissions, pollution and control in China is comprehensively reviewed in this paper. With about 500–800 t of anthropogenic mercury emissions, China contributes 25%–40% to the global mercury emissions. The dominant mercury emission sources in China are coal combustion, non-ferrous metal smelting, cement production and iron and steel production. The mercury emissions from natural sources in China are equivalent to the anthropogenic mercury emissions. The atmospheric mercury concentration in China is about 2–10 times the background level of North Hemisphere. The mercury deposition fluxes in remote areas in China are usually in the range of 10–50 μg·m−2·yr−1. To reduce mercury emissions, legislations have been enacted for power plants, non-ferrous metal smelters and waste incinerators. Currently mercury contented in the flue gas is mainly removed through existing air pollution control devices for sulfur dioxide, nitrogen oxides, and particles. Dedicated mercury control technologies are required in the future to further mitigate the mercury emissions in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. United Nations Environment Programme (UNEP). Global Mercury Assessment 2013: Sources, Emissions, Releases and Environmental Transport. Geneva, Switzerland: UNEP Chemicals Branch, 2013

    Google Scholar 

  2. Pirrone N, Mason R P. Hg Fate and Transport in the Global Atmosphere: Emissions, Measurements and Models. Geneva. Switzerland: Springer, 2009

    Google Scholar 

  3. Sprovieri F, Pirrone N, Ebinghaus R, Kock H, Dommergue A. A review of worldwide atmospheric mercury measurements. Atmospheric Chemistry and Physics, 2010, 10(17): 8245–8265

    CAS  Google Scholar 

  4. Schroeder W H, Munthe J. Atmospheric mercury-An overview. Atmospheric Environment, 1998, 32(5): 809–822

    CAS  Google Scholar 

  5. Ci Z J, Zhang X S, Wang Z W. Enhancing atmospheric mercury research in China to improve the current understanding of the global mercury cycle: the need for urgent and closely coordinated efforts. Environmental Science and Technology, 2012, 46(11): 5636–5642

    CAS  Google Scholar 

  6. Fu X W, Feng X B, Sommar J, Wang S F. A review of studies on atmospheric mercury in China. Science of the Total Environment, 2012, 421–422: 73–81

    Google Scholar 

  7. Lindberg S E, Bullock R, Ebinghaus R, Engstrom D, Feng X B, Fitzgerald W, Pirrone N, Prestbo E, Seigneur C. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. Ambio, 2007, 36(1): 19–32

    CAS  Google Scholar 

  8. Lynam M M, Keeler G J. Automated speciated mercury measurements in Michigan. Environmental Science and Technology, 2005, 39(23): 9253–9262

    CAS  Google Scholar 

  9. Obrist D, Tas E, Peleg M, Matveev V, Faïn X, Asaf D, Luria M. Bromine-induced oxidation of mercury in the mid-latitude atmosphere. Nature Geoscience, 2011, 22(1): 22–26

    Google Scholar 

  10. Wu Y, Wang S X, Streets D G, Hao JM, Chan M, Jiang J K. Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environmental Science and Technology, 2006, 40(17): 5312–5318

    CAS  Google Scholar 

  11. Streets D G, Hao JM, Wu Y, Jiang J K, Chan M, Tian H Z, Feng X B. Anthropogenic mercury emissions in China. Atmospheric Environment, 2005, 39(40): 7789–7806

    CAS  Google Scholar 

  12. Pacyna E G, Pacyna J M, Steenhuisen F, Wilson S. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 2006, 22(40): 4048–4063

    Google Scholar 

  13. Pacyna E G, Pacyna J M, Sundseth K, Munthe J, Kindbom K, Wilson S, Steenhuisen F, Maxson P. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment, 2010, 44(20): 2487–2499

    CAS  Google Scholar 

  14. Arctic Monitoring and Assessment Programme (AMAP) and United Nations Environment Programme. (UNEP). Technical Background Report to the Global Atmospheric Mercury Assessment. Geneva, Switzerland: UNEP, 2008

    Google Scholar 

  15. Pirrone N, Chinirella S, Feng X B, Finkelman R B, Friedli H R, Leaner J, Mason R, Mukherjee A B, Stracher G B, Streets D G, Telmer K. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics, 2010, 10(13): 5951–5964

    CAS  Google Scholar 

  16. Feng X B, Hong Y T. Estimation of mercury released to the air from coal combustion in China. Coal Mine Environment Protection, 1996, 10(3): 10–13

    Google Scholar 

  17. Wang Q C, Shen W G, Ma S W. The estimation of mercury emission fromcoal combustion in China. China Environmental Science, 1999, 19(4): 318–321

    Google Scholar 

  18. Jiang J K, Hao J M, Wu Y, Streets D G, Duan L, Tian H Z. Development of mercury emission inventory from coal combustion in China. Environmental Sciences, 2005, 26(2): 34–39

    CAS  Google Scholar 

  19. Tian H Z, Wang Y, Xue Z G, Cheng K, Qu Y P, Chai F H, Hao JM. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmospheric Chemistry and Physics, 2010, 10(23): 11905–11919

    CAS  Google Scholar 

  20. Zhang L. Emission characteristics and synergistic control strategies of atmospheric mercury from coal combustion in China. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2012

    Google Scholar 

  21. Wang S X, Liu M, Jiang J K, Hao JM, Wu Y, Streets D G. Estimate the mercury emissions from non-coal sources in China. Environmental Sciences, 2006, 27(12): 2401–2406

    Google Scholar 

  22. Hylander L D, Herbert R B. Global emission and production of mercury during the pyrometallurgical extraction of nonferrous sulfide ores. Environmental Science and Technology, 2008, 42(16): 5971–5977

    CAS  Google Scholar 

  23. Li G H, Feng X B, Li Z G, Qiu G L, Shang L H, Liang P, Wang D Y, Yang Y K. Mercury emission to atmosphere from primary Zn production in China. Science of the Total Environment, 2010, 408(20): 4607–4612

    CAS  Google Scholar 

  24. Yin R S, Feng X B, Li Z G, Zhang Q, Bi XW, Li G H, Liu J L, Zhu J J, Wang J X. Metallogeny and environmental impact of Hg in Zn deposits in China. Applied Geochemistry, 2012, 27(1): 151–160

    CAS  Google Scholar 

  25. Wu Q R, Wang S X, Zhang L, Song J X, Yang H, Meng Y. Update of mercury emissions from China’s primary zinc, lead and copper smelters, 2000–2010. Atmospheric Chemistry and Physics, 2012, 12(22): 11153–11163

    CAS  Google Scholar 

  26. Guan D B, Liu Z, Geng Y, Lindner S, Hubacek K. The gigatonne gap in China’s carbon dioxide inventories. Nature Climate Change, 2012, 2: 672–675

    CAS  Google Scholar 

  27. Wang Q, Shen W, Ma Z. Estimation of mercury emission from coal combustion in China. Environmental Science and Technology, 2000, 34(13): 2711–2713

    CAS  Google Scholar 

  28. Zhang MQ, Zhu Y C, Deng RW. Evaluation of mercury emissions to the atmosphere from coal combustion, China. Ambio, 2002, 31(6): 482–484

    Google Scholar 

  29. Huang W, Yang Y. Mercury in coal in China. Coal Geology of China, 2002, 14(5): 37–40

    Google Scholar 

  30. Zhang J, Ren D, Xu D, Zhao F. Mercury in coal and its effect on environment. Advances in Environmental Science, 1999, 7(3): 100–104

    CAS  Google Scholar 

  31. United States Geological Survey (USGS). Mercury Content in Coal Mines in China. 2004

    Google Scholar 

  32. Ren D, Zhao F, Dai S, Zhang J, Luo K. Geochemistry of Trace Elements in Coal. Beijing: Science Press, 2006

    Google Scholar 

  33. Zheng L, Liu G, Chou C L. The distribution, occurrence and environmental effect of mercury in Chinese coals. Science of the Total Environment, 2007, 384(1–3): 374–383

    CAS  Google Scholar 

  34. Tian H Z, Wang Y, Xue Z G, Qu Y P, Chai F H, Hao J M. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007. Science of the Total Environment, 2011, 409(16): 3078–3081

    CAS  Google Scholar 

  35. Tian H Z, Wang Y, Cheng K, Qu Y P, Hao JM, Xue Z G, Chai F H. Control strategies of atmospheric mercury emissions from coal-fired power plants in China. Journal of the Air and Waste Management Association, 2012, 62(5): 576–586

    CAS  Google Scholar 

  36. Tian H Z, Lu L, Hao JM, Gao J J, Cheng K, Liu K Y, Qiu P P, Zhu C Y. A review of key hazardous trace elements in Chinese coals: Abundance, occurrence, behavior during coal combustion and their environmental impacts. Energy and Fuels, 2013, 27(2): 601–614

    CAS  Google Scholar 

  37. Zhang L, Wang S X, Meng Y, Hao J M. Influence of mercury and chlorine content of coal on mercury emissions from coal-fired power plants in China. Environmental Science and Technology, 2012, 46(11): 6385–6392

    CAS  Google Scholar 

  38. Chen L, Duan Y, Zhuo Y, Yang L, Zhang L, Yang X, Yao Q, Jiang Y, Xu X. Mercury transformation across particulate control devices in six power plants of China: The co-effect of chlorine and ash composition. Fuel, 2007, 86(4): 603–610

    CAS  Google Scholar 

  39. Zhou J. Emissions and Control of Mercury from Coal-Fired Utility Boilers in China. China Workshop on Mercury Control from Coal Combustion, Beijing, 2005

    Google Scholar 

  40. Zhou J, Wang G, Luo Z, Cen K. An experimental study of mercury emissions from a 600 MW pulverized coal-fired boiler. Journal of Engineering for Thermal Energy and Power, 2006, 21(6): 569–572

    CAS  Google Scholar 

  41. Zhou J, Zhang L, Luo Z, Hu C. Study on mercury emission and its control for boiler of 300 MW unit. Thermal Power Generation, 2008, 37(4): 22–27

    Google Scholar 

  42. Wang Y, Duan Y, Yang L, Jiang Y. An analysis of the factors exercising an influence on the morphological transformation of mercury in the flue gas of a 600 MW coal-fired power plant. Journal of Engineering for Thermal Energy and Power, 2008, 23(4): 399–403

    Google Scholar 

  43. Yang X, Duan Y, Jiang Y, Yang L. Research on mercury form distribution in flue gas and fly ash of coal-fired boiler. Coal Science and Technology, 2007, 35(12): 55–58

    Google Scholar 

  44. Duan Y, Cao Y, Kellie S, Liu K, Riley J T, Pan W. In-situ measurement and distribution of flue gas mercury for a utility PC boiler system. Journal of Southeast University, 2005, 21(1): 53–57

    CAS  Google Scholar 

  45. Wang Y, Duan Y, Yang L, Zhao C, Shen X, Zhang M, Zhuo Y, Chen C. Experimental study on mercury transformation and removal in coal-fired boiler flue gases. Fuel Processing Technology, 2009, 90(5): 643–651

    CAS  Google Scholar 

  46. Wu C, Duan Y, Wang Y, Jiang Y, Wang Q, Yang L. Characteristics of mercury emission and demercurization property of NID system of a 410 t/h pulverized coal fired boiler. Journal of Fuel Chemistry and Technology, 2008, 36(5): 540–544

    CAS  Google Scholar 

  47. Chen Y, Chai F, Xue Z, Liu T, Chen Y, Tian C. Study on mercury emission factors for coal-fired power plants. Research of Environmental Sciences, 2006, 19(2): 49–52

    Google Scholar 

  48. Guo X, Zheng C, Jia X, Lin Z, Liu Y. Study on mercury speciation in pulverized coal-fired flue gas. Proceedings of the CSEE, 2004, 24(6): 185–188

    Google Scholar 

  49. Tang S. The mercury species and emissions from coal combustion flue gas and landfill gas in Guiyang. Dissertation for the Doctoral Degree. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 2004

    Google Scholar 

  50. Goodarzi F. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals. Journal of Environmental Monitoring, 2004, 6(10): 792–798

    CAS  Google Scholar 

  51. He B, Cao Y, Romero C E, Bilirgen H, Sarunac N, Agarwal H, Pan W. Comparison and validation of OHM and SCEM measurements for a full-scale coal-fired power plant. Chemical Engineering Communications, 2007, 194(10–12): 1596–1607

    CAS  Google Scholar 

  52. Kellie S, Duan Y, Cao Y, Chu P, Mehta A, Carty R, Liu K, Pan W, Riley J T. Mercury emissions from a 100-MW wall-fired boiler as measured by semicontinuous mercury monitor and Ontario Hydro Method. Fuel Processing Technology, 2004, 85(6–7): 487–499

    CAS  Google Scholar 

  53. Lee S J, Seo Y C, Jang H N, Park K S, Baek J I, An H S, Song K C. Speciation and mass distribution of mercury in a bituminous coal-fired power plant. Atmospheric Environment, 2006, 40(12): 2215–2224

    CAS  Google Scholar 

  54. Jun Lee S, Seo Y C, Jurng J, Hong J H, Park J W, Hyun J E, Gyu Lee T. Mercury emissions from selected stationary combustion sources in Korea. Science of the Total Environment, 2004, 325(1–3): 155–161

    Google Scholar 

  55. Otero-Rey J R, López-Vilariño J M, Moreda-Piñeiro J, Alonso-Rodríguez E, Muniategui-Lorenzo S, López-Mahía P, Prada-Rodríguez D. As, Hg, and Se flue gas sampling in a coal-fired power plant and their fate during coal combustion. Environmental Science and Technology, 2003, 37(22): 5262–5267

    CAS  Google Scholar 

  56. Shah P, Strezov V, Nelson P. Speciation of mercury in coal-fired power station flue gas. Energy and Fuels, 2010, 24(1): 205–212

    CAS  Google Scholar 

  57. Ito S, Yokoyama T, Asakura K. Emissions of mercury and other trace elements from coal-fired power plants in Japan. Science of the Total Environment, 2006, 368(1): 397–402

    CAS  Google Scholar 

  58. Meij R, te Winkel H. Mercury emissions from coal-fired power stations: The current state of the art in the Netherlands. Science of the Total Environment, 2006, 368(1): 393–396

    CAS  Google Scholar 

  59. Shah P, Strezov V, Prince K, Nelson P F. Speciation of As, Cr, Se and Hg under coal fired power station conditions. Fuel, 2008, 87(10–11): 1859–1869

    CAS  Google Scholar 

  60. Yokoyama T, Asakura K, Matsuda H, Ito S, Noda N. Mercury emissions from a coal-fired power plant in Japan. Science of the Total Environment, 2000, 259(1–3): 97–103

    CAS  Google Scholar 

  61. Kim J H, Pudasainee D, Yoon Y S, Son S U, Seo Y C. Studies on speciation changes and mass distribution of mercury in a bituminous coal-fired power plant by combining field data and chemical equilibrium calculation. Industrial and Engineering Chemistry Research, 2010, 49(11): 5197–5203

    CAS  Google Scholar 

  62. Cheng C M, Hack P, Chu P, Chang Y N, Lin T Y, Ko C S, Chiang P H, He C C, Lai Y M, Pan W P. Partitioning of mercury, arsenic, selenium, boron, and chloride in a full-scale coal combustion process equipped with selective catalytic reduction, electrostatic precipitation, and flue gas desulfurization systems. Energy and Fuels, 2009, 23(10): 4805–4816

    CAS  Google Scholar 

  63. Information Collection Request (ICR). Results from onsite measurements in USA. Washington, D C: 2010

    Google Scholar 

  64. Wang S X, Zhang L, Li G H, Wu Y, Hao J M, Pirrone N, Sprovieri F, Ancora M P. Mercury emission and speciation of coal-fired power plants in China. Atmospheric Chemistry and Physics, 2010, 10(3): 1183–1192

    CAS  Google Scholar 

  65. Song J X, Wang S X, Li G H. Spatial distribution of mercury content of zinc concentrates in China. Science Paper Online, 2010, 5(6): 472–475

    CAS  Google Scholar 

  66. Wang S X, Song J X, Li G H, Wu Y, Zhang L, Wan Q, Streets D G, Chin C K, Hao J M. Estimating mercury emissions from a zinc smelter in relation to China’s mercury control policies. Environmental Pollution, 2010, 158(10): 3347–3353

    CAS  Google Scholar 

  67. Zhang L, Wang S X, Wu Q R, Meng Y, Yang H, Wang F Y, Hao J M. Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters. Environmental Pollution, 2012, 171: 109–117

    CAS  Google Scholar 

  68. Gunson A J, Veiga M M. Mercury and artisanal mining in China. Environmental Practice, 2004, 6(2): 109–120

    Google Scholar 

  69. Sikkema J K, Alleman J E, Ong S K, Wheelock T D. Mercury regulation, fate, transport, transformation, and abatement within cement manufacturing facilities: review. Science of the Total Environment, 2011, 409(20): 4167–4178

    CAS  Google Scholar 

  70. Won J H, Lee T G. Estimation of total annual mercury emissions from cement manufacturing facilities in Korea. Atmospheric Environment, 2012, 62: 265–271

    CAS  Google Scholar 

  71. Mlakar T L, Horvat M, Vuk T, Stergaršek A, Kotnik J, Tratnik J, Fajon V. Mercury species, mass flows and processes in a cement plant. Fuel, 2010, 89(8): 1936–1945

    CAS  Google Scholar 

  72. Li W J. Characterization of atmospheric mercury emissions from coal-fired power plant and cement plant. Dissertation for the Master Degree. Chongqing: Southwest University, 2011

    Google Scholar 

  73. Zhang L. Research on mercury emission measurement and estimate from combustion resources. Dissertation for the Master Degree. Hangzhou: Zhejiang University, 2007

    Google Scholar 

  74. United Nations Environment Programme (UNEP). Toolkit for Identification and Quantification of Mercury Releases. 2005

    Google Scholar 

  75. Fukuda N, Takaoka M, Doumoto S, Oshita K, Morisawa S, Mizuno T. Mercury emission and behavior in primary ferrous metal production. Atmospheric Environment, 2011, 45(22): 3685–3691

    CAS  Google Scholar 

  76. Tian H Z, Gao J J, Lu L, Zhao D, Cheng K, Qiu P P. Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China. Environmental Science and Technology, 2012, 46(18): 10364–10371

    CAS  Google Scholar 

  77. Mason R P, Fitzgerald W F, Morel F M M. The biogeochemical cycling of elemental mercury: Anthropogenic influences. Geochimica et Cosmochimica Acta, 1994, 58(15): 3191–3198

    CAS  Google Scholar 

  78. Feng X B, Yan H Y, Wang S F, Qiu G L, Tang S L, Shang L H, Dai Q J, Hou Y M. Seasonal variation of gaseous mercury exchange rate between air and water surface over Baihua reservoir, Guizhou, China. Atmospheric Environment, 2004, 38(28): 4721–4732

    CAS  Google Scholar 

  79. Feng X B, Wang S F, Qiu G G, He T R, Li G H, Li Z G, Shang L H. Total gaseous mercury exchange between water and air during cloudy weather conditions over Hongfeng Reservoir, Guizhou, China. J Geophys Res-Atmos, 2008, 113(D15): D15309

    Google Scholar 

  80. Feng X B, Wang S F, Qiu G A, Hou Y M, Tang S L. Total gaseous mercury emissions from soil in Guiyang, Guizhou, China. J Geophys Res-Atmos, 2005, 110(D14): D14306

    Google Scholar 

  81. Shetty S K, Lin C J, Streets D G, Jang C. Model estimate of mercury emission from natural sources in East Asia. Atmospheric Environment, 2008, 42(37): 8674–8685

    CAS  Google Scholar 

  82. Wu Y, Wang S X, Streets D G, Hao JM, Chan M, Jiang J K. Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environmental Science and Technology, 2006, 40(17): 5312–5318

    CAS  Google Scholar 

  83. Pan L, Chai T F, Carmichael G R, Tang Y H, Streets D, Woo J H, Friedli H R, Radke L F. Top-down estimate of mercury emissions in China using four-dimensional variational data assimilation. Atmospheric Environment, 2007, 41(13): 2804–2819

    CAS  Google Scholar 

  84. Strode S A, Jaegle L, Jaffe D A, Swartzendruber P C, Selin N E, Holmes C, Yantosca R M. Trans-Pacific transport of mercury. J Geophys Res-Atmos, 2008, 113(D15): D15305

    Google Scholar 

  85. Gbor P K, Wen D Y, Meng F, Yang F Q, Zhang B N, Sloan J J. Improved model for mercury emission, transport and deposition. Atmospheric Environment, 2006, 40(5): 973–983

    CAS  Google Scholar 

  86. Feng X B, Shang L H, Wang S F, Tang S L, Zheng W. Temporal variation of total gaseous mercury in the air of Guiyang, China. Journal of Geophysical Research, 2004, 109(D3): 3303

    Google Scholar 

  87. Fu X W, Feng X B, Qiu G L, Shang L H, Zhang H. Speicated atmospheric mercury and its potential source in Guiyang, China. Atmospheric Environment, 2011, 45(25): 4205–4212

    CAS  Google Scholar 

  88. Fang F M, Wang Q C, Li J F. Urban environmental mercury in Changchun, a metropolitan city in Northeastern China: source, cycle, and fate. Science of the Total Environment, 2004, 330(1–3): 159–170

    CAS  Google Scholar 

  89. Wang Z W, Chen Z S, Duan N, Zhang X S. Gaseous elemental mercury concentration in atmosphere at urban and remote sites in China. Journal of Environmental Sciences (China), 2007, 19(2): 176–180

    CAS  Google Scholar 

  90. Yang Y K, Chen H, Wang D Y. Spatial and temporal distribution of gaseous elemental mercury in Chongqing, China. Environmental Monitoring and Assessment, 2009, 156(1–4): 479–489

    CAS  Google Scholar 

  91. Friedli H R, Arellano A F Jr, Geng F, Cai C, Pan L. Measurements of atmospheric mercury in Shanghai during September 2009. Atmospheric Chemistry and Physics, 2011, 11(8): 3781–3788

    Google Scholar 

  92. Nguyen D L, Kim J Y, Shim S G, Zhang X S. Ground and shipboard measurements of atmospheric gaseous elemental mercury over the Yellow Sea region during 2007–2008. Atmospheric Environment, 2011, 45(1): 253–260

    CAS  Google Scholar 

  93. Zhu J, Wang T, Talbot R, Mao H, Hall C B, Yang X, Fu C, Zhuang B, Li S, Han Y, Huang X. Characteristics of atmospheric Total Gaseous Mercury (TGM) observed in urban Nanjing, China. Atmospheric Chemistry and Physics, 2012, 12(24): 12103–12118

    CAS  Google Scholar 

  94. Fu X W, Feng X B, Zhu W Z, Wang S F, Lu J L. Total gaseous mercury concentrations in ambient air in the eastern slope of Mt. Gongga, South-Eastern fringe of the Tibetan plateau, China. Atmospheric Environment, 2008, 42(5): 970–979

    CAS  Google Scholar 

  95. Fu X W, Feng X B, Zhu W Z, Zheng W, Wang S F, Lu J Y. Total particulate and reactive gaseous mercury in ambient air on the eastern slope of the Mt. Gongga area, China. Applied Geochemistry, 2008, 23(3): 408–418

    CAS  Google Scholar 

  96. Wan Q, Feng X B, Lu J, Zheng W, Song X J, Han S J, Xu H. Atmospheric mercury in Changbai Mountain area, northeastern China I. The seasonal distribution pattern of total gaseous mercury and its potential sources. Environmental Research, 2009, 109(3): 201–206

    CAS  Google Scholar 

  97. Wan Q, Feng X B, Lu J, Zheng W, Song X J, Li P, Han S J, Xu H. Atmospheric mercury in Changbai Mountain area, northeastern China II. The distribution of reactive gaseous mercury and particulate mercury and mercury deposition fluxes. Environmental Research, 2009, 109(6): 721–727

    CAS  Google Scholar 

  98. Fu X W, Feng X B, Shang L H, Wang S F, Zhang H. Two years of measurements of atmospheric total gaseous mercury (TGM) at a remote site in Mt. Changbai area, Northeastern China. Atmospheric Chemistry and Physics, 2012, 12(9): 4215–4226

    CAS  Google Scholar 

  99. Fu X W, Feng X B, Dong Z Q, Yin R S, Wang J X, Yang Z R, Zhang H. Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China. Atmospheric Chemistry and Physics, 2010, 10(5): 2425–2437

    CAS  Google Scholar 

  100. Fu XW, Feng X B, Zhang G, Xu WH, Li X D, Yao H, Liang P, Li J, Sommar J, Yin R S, Liu N. Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow. Journal of Geophysical Research, 2010, 115(D6): 6303

    Google Scholar 

  101. Fu XW, Feng X B, Liang P, Deliger, Zhang H, Ji J, Liu P. Deliger, Zhang H, Ji J, Liu P. Temporal trend and sources of speciated atmospheric mercury at Waliguan GAW station, Northwestern China. Atmospheric Chemistry and Physics, 2012, 12(4): 1951–1964

    CAS  Google Scholar 

  102. Ci Z J, Zhang X S, Wang Z W, Niu Z C. Atmospheric gaseous elemental mercury (GEM) over a coastal/rural site downwind of East China: Temporal variation and long-range transport. Atmospheric Environment, 2011, 45(15): 2480–2487

    CAS  Google Scholar 

  103. Ci Z J, Zhang X S, Wang Z W, Niu Z C, Diao X Y, Wang S W. Distribution and air-sea exchange of mercury (Hg) in the Yellow Sea. Atmospheric Chemistry and Physics, 2011, 11(6): 2881–2892

    CAS  Google Scholar 

  104. Li Z, Xia C H, Wang X M, Xia Y R, Xie Z Q. Total gaseous mercury in Pearl River Delta region, China during 2008 winter period. Atmospheric Environment, 2011, 45(4): 834–838

    CAS  Google Scholar 

  105. Zhang H. Concentrations of speciated atmospheric mercury a highaltitude background station in the Shangri-La area of Tibetan Plateau, China. In: Proceedings of 10th International Conference on Mercury as a Global Pollutant, Halifax, Canada, 2011

    Google Scholar 

  106. Zhang L, Wang S X, Wang L, Hao J M. Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implication of mercury emission sources. Atmospheric Chemistry and Physics, 2013, 13: 10505–10516

    Google Scholar 

  107. Dou H Y. Characteristics of speciated atmospheric mercury concentrations at a rural site of Yangtze Delta, China. Dissertation for the Master Degree. Beijing: Tsinghua University, 2012

    Google Scholar 

  108. Wang ZW, Zhang X S, Xiao J S, Zhijia C, Yu P Z. Mercury fluxes and pools in three subtropical forested catchments, southwest China. Environmental Pollution, 2009, 157(3): 801–808

    CAS  Google Scholar 

  109. Fu X W, Feng X B, Zhu W Z, Rothenberg S, Yao H, Zhang H. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China. Environmental Pollution, 2010, 158(6): 2324–2333

    CAS  Google Scholar 

  110. Huang J, Kang S C, Zhang Q G, Yan H Y, Guo J M, Jenkins M G, Zhang G S, Wang K. Wet deposition of mercury at a remote site in the Tibetan Plateau: Concentrations, speciation, and fluxes. Atmospheric Environment, 2012, 62: 540–550

    CAS  Google Scholar 

  111. Dai Z H, Feng X B, Sommar J, Li P, Fu XW. Spatial distribution of mercury deposition fluxes in Wanshan Hg mining area, Guizhou Province, China. Atmospheric Chemistry and Physics, 2012, 12(14): 6207–6218

    CAS  Google Scholar 

  112. Guo Y N, Feng X B, Li Z G, He T R, Yan H Y, Meng B, Zhang J F, Qiu G L. Distribution and wet deposition fluxes of total and methyl mercury in Wujiang River Basin, Guizhou, China. Atmospheric Environment, 2008, 42(30): 7096–7103

    CAS  Google Scholar 

  113. Wangberg I, Munthe J, Berg T, Ebinghaus R, Kock H H, Temme C, Bieber E, Spain T G, Stolk A. Trends in air concentration and deposition of mercury in the coastal environment of the North Sea Area. Atmospheric Environment, 2007, 41(12): 2612–2619

    Google Scholar 

  114. Graydon J A, St Louis V L, Hintelmann H, Lindberg S E, Sandilands K A, Rudd J W M, Kelly C A, Hall B D, Mowat L D. Long-term wet and dry deposition of total and methyl mercury in the remote boreal ecoregion of Canada. Environmental Science and Technology, 2008, 42(22): 8345–8351

    CAS  Google Scholar 

  115. Prestbo E M, Gay D A. Wet deposition of mercury in the US and Canada, 1996–2005: Results and analysis of the NADP mercury deposition network (MDN). Atmospheric Environment, 2009, 43(27): 4223–4233

    CAS  Google Scholar 

  116. Caldwell C A, Swartzendruber P, Prestbo E. Concentration and dry deposition of mercury species in arid south central New Mexico (2001–2002). Environmental Science and Technology, 2006, 40(24): 7535–7540

    CAS  Google Scholar 

  117. Marsik F J, Keeler G J, Landis M S. The dry-deposition of speciated mercury to the Florida Everglades: Measurements and modeling. Atmospheric Environment, 2007, 41(1): 136–149

    CAS  Google Scholar 

  118. Feng X B, Li G H, Qiu G L. A preliminary study on mercury contamination to the environment from artisanal zinc smelting using indigenous methods in Hezhang county, Guizhou, China-Part 1: Mercury emission from zinc smelting and its influences on the surface waters. Atmospheric Environment, 2004, 38(36): 6223–6230

    CAS  Google Scholar 

  119. Zhang Z, Wang Q, Zheng D, Zheng N, Lu X. Mercury distribution and bioaccumulation up the soil-plant-grasshopper-spider food chain in Huludao City, China. Journal of Environmental Sciences (China), 2010, 22(8): 1179–1183

    CAS  Google Scholar 

  120. Li Z, Feng X, Li G, Bi X, Sun G, Zhu J, Qin H, Wang J. Mercury and other metal and metalloid soil contamination near a Pb/Zn smelter in east Hunan Province, China. Applied Geochemistry, 2011, 26(2): 160–166

    Google Scholar 

  121. Zheng N, Liu J, Wang Q, Liang Z. Mercury contamination due to zinc smelting and chlor-alkali production in NE China. Applied Geochemistry, 2011, 26(2): 188–193

    CAS  Google Scholar 

  122. Yin X, Yao C, Song J, Li Z, Zhang C, Qian W, Bi D, Li C, Teng Y, Wu L, Wan H, Luo Y. Mercury contamination in vicinity of secondary copper smelters in Fuyang, Zhejiang Province, China: levels and contamination in topsoils. Environmental Pollution, 2009, 157(6): 1787–1793

    CAS  Google Scholar 

  123. Jaffe D, Strode S. Sources, fate and transport of atmospheric mercury from Asia. Environmental Chemistry, 2008, 5(2): 121–126

    CAS  Google Scholar 

  124. Selin N E, Jacob D J, Yantosca R M, Strode S, Jaegle L, Sunderland E M. Global 3-D land-ocean-atmosphere model for mercury: Present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Global Biogeochemical Cycle, 2008, 22: GB2011

    Google Scholar 

  125. Lin C J, Pan L, Streets D G, Shetty S K, Jang C, Feng X, Chu HW, Ho T C. Estimating mercury emission outflow from East Asia using CMAQ-Hg. Atmospheric Chemistry and Physics, 2010, 10(4): 1853–1864

    CAS  Google Scholar 

  126. Pan L, Lin C J, Carmichael G R, Streets D G, Tang Y H, Woo J H, Shetty S K, Chu H W, Ho T C, Friedli H R, Feng X B. Study of atmospheric mercury budget in East Asia using STEM-Hg modeling system. Science of the Total Environment, 2010, 408(16): 3277–3291

    CAS  Google Scholar 

  127. Seigneur C, Vijayaraghavan K, Lohman K, Karamchandani P, Scott C. Global source attribution for mercury deposition in the United States. Environmental Science & Technology, 2004, 38(2): 555–569

    CAS  Google Scholar 

  128. Durnford D, Dastoor A, Figueras-Nieto D, Ryjkov A. Long range transport of mercury to the Arctic and across Canada. Atmospheric Chemistry and Physics, 2010, 10(13): 6063–6086

    CAS  Google Scholar 

  129. Ministry of Environmental Protection of China (MEP). Emission standard of air pollutants for thermal power plants (GB 13223-2011). Beijing, 2011

    Google Scholar 

  130. United States Environmental Protection Agency (US EPA). Database of information collected in the electric utility steam generating unit mercury emissions information collection effort. Research Triangle Park, NC, USA: US EPA, 2001

    Google Scholar 

  131. Brown T D, Smith D N, Hargis R A, O’Dowd JWJ, O’Dowd WJ. Mercury measurement and its control: what we know, have learned, and need to further investigate. Journal of the Air and Waste Management Association, 1999, 49(12): 1469–1473

    Google Scholar 

  132. Black & Veatch. Effective mercury reduction strategy for western coal/K-Fuel technology, 2003

    Google Scholar 

  133. KFx. Final Report of K-Fuel™ Test Burn Validates Initial Emissions Data. 2006

    Google Scholar 

  134. Miller C, Feeley T, Aljoe W, Lani B, Schroeder K, Kairies C, McNemar A, Jones A, Murphy J. Mercury capture and fate using wet FGD at coal-fired power plants. Pittsburgh, PA, USA: 2006

    Google Scholar 

  135. Bustard J, Sjostrom S, Starns T, Durham M. Full scale evaluation of mercury control technologies with PRB coals. Clean Air Technologies and Strategies Conference, Baltimore, MD, USA, 2005

    Google Scholar 

  136. Vosteen B W, Lindau L. Bromine based mercury abatementpromising results from further full scale testing. MEC3 Conference, Katowice, Poland, 2006

    Google Scholar 

  137. Sloss L. Implications of emission legislation for existing coal-fired plants. 2009

    Google Scholar 

  138. Chu P. Effects of SCRs on mercury. Mercury Experts Conference, Glasgow, Scotland, 2004

    Google Scholar 

  139. Winberg S, Winthum J, Tseng S, Locke J. Evaluation of mercury emissions from coal-fired facilities with SCR-FGD systems. DOE/NETL Mercury Control Technology R&D Program Review, Pittsburgh, PA, USA, 2004

    Google Scholar 

  140. GAO. Preliminary observations on the effectiveness and costs of mercury control technologies at coal-fired power plants. Washington, DC, USA: 2009

    Google Scholar 

  141. Srivastava R K, Jozewicz W. Flue gas desulfurization: the state of the art. Journal of the Air and Waste Management Association, 2001, 51(12): 1676–1688

    CAS  Google Scholar 

  142. Modern Power Systems. Can Enviroscrub clean up in the multipollutant control business. 2002

    Google Scholar 

  143. McLarnon C R, Jones M D. Pilot testing and scale-up of a multipollutant control technology at FirstEnergy. PowerGen International Conference, Orlando, FL, USA, 2000

    Google Scholar 

  144. Ferrell R. Controlling NOX emissions: a cooler alternative. 2000

    Google Scholar 

  145. Altman R, Buckley W, Ray I. Multi-pollutant control with dry-wet hybrid ESP technology. Combined Utility Air Pollutant Control Symposium, Washington, DC, USA, 2003

    Google Scholar 

  146. Zhao Y. Study on air pollutant emission of coal-fired power plants in China and its environmental impacts. Dissertation for the Doctor Degree. Beijing: Tsinghua University, 2008

    Google Scholar 

  147. China Electricity Council (CEC). Annual Development Report of China’s Power Industry 2011. Beijing: China Market Press, 2011

    Google Scholar 

  148. China Electric Power Yearbook Editorial Committee. China Electric Power Yearbook. Beijing: China Electric Power Press, 2011

    Google Scholar 

  149. Lei Y, Zhang Q, Nielsen C, He K. An inventory of primary air pollutants and CO2 emissions from cement production in China, 1990–2020. Atmospheric Environment, 2011, 45(1): 147–154

    CAS  Google Scholar 

  150. Wang S X, Zhang L, Wu Y, Ancora M P, Zhao Y, Hao J M. Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China. Journal of the Air & Waste Management Association, 2010, 60(6): 722–730

    CAS  Google Scholar 

  151. Wang S X, Zhang L, Zhao B, Meng Y, Hao J M. Mitigation potential of mercury emissions from coal-fired power plants in China. Energy and Fuels, 2012, 26(8): 4635–4642

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuxiao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Zhang, L., Wang, L. et al. A review of atmospheric mercury emissions, pollution and control in China. Front. Environ. Sci. Eng. 8, 631–649 (2014). https://doi.org/10.1007/s11783-014-0673-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-014-0673-x

Keywords

Navigation