Skip to main content

Behavior of aqueous stable colloidal nano-C60 aggregates exposed to TX100 micelles under different environmental conditions

Abstract

C60, as one of carbon nanomaterials widely used in various fields, could be released into the water environment thus exerting some potential health risks to human beings. This work examined the behavior of aqueous stable colloidal nano-C60 (nC60) aggregates under different environmental conditions including Polyethylene glycol octylphenol ether (TX100) micelles concentration, pH, and reaction time when exposed to TX100 micelles. Results show that the nC60 aggregates became more dispersive and restored the capability of generating the singlet oxygen when exposed to TX100 micelles. With the increase of TX100 concentration, smaller average size of nC60 aggregates was observed in dynamic light scattering (DLS) analysis, the fluorescence intensity of TX100 was more quenched by nC60 aggregates, and the kinetic rate constant of generating the singlet oxygen for nC60 aggregates was improved. The mean size of nC60 aggregates in the presence of TX100 had no obvious variations when the pH ranged from 4 to 8. The longer reaction time between nC60 aggregates and TX100 led to a higher kinetic rate constant of generating the singlet oxygen. Collective data suggest that variations in physicochemical properties of nC60 aggregates are strongly dependent on the surrounding media under different environmental conditions and directly govern nC60’s transport behavior and potential toxicity.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Lens M. Recent progresses in application of fullerenes in cosmetics. Recent Patents on Biotechnology, 2011, 5(2):67–73

    Article  CAS  Google Scholar 

  2. 2.

    Lin C M, Lu T Y. C60 fullerene derivatized nanoparticles and their application to therapeutics. Recent Patents on Nanotechnology, 2012, 6(2):105–113

    Article  CAS  Google Scholar 

  3. 3.

    Nierengarten J F. Chemical modification of C60 for materials science applications. New Journal of Chemistry, 2004, 28(10):1177–1191

    Article  CAS  Google Scholar 

  4. 4.

    Kroto H W, Allaf A W, Balm S P. C60: buckminsterfullerene. Chemical Reviews, 1991, 91(6):1213–1235

    Article  CAS  Google Scholar 

  5. 5.

    Jafvert C T, Kulkarni P P. Buckminsterfullerene’s (C60) octanolwater partition coefficient (Kow) and aqueous solubility. Environmental Science & Technology, 2008, 42(16):5945–5950

    Article  CAS  Google Scholar 

  6. 6.

    Fortner J D, Lyon D Y, Sayes CM, Boyd AM, Falkner J C, Hotze E M, Alemany L B, Tao Y J, Guo W, Ausman K D, Colvin V L, Hughes J B. C60 in water: nanocrystal formation and microbial response. Environmental Science & Technology, 2005, 39(11):4307–4316

    Article  CAS  Google Scholar 

  7. 7.

    Sayes C M, Fortner J D, Guo W, Lyon D, Boyd A M, Ausman K D, Tao Y J, Sitharaman B, Wilson L J, Hughes J B, West J L, Colvin V L. The differential cytotoxicity of water-soluble fullerenes. Nano Letters, 2004, 4(10):1881–1887

    Article  CAS  Google Scholar 

  8. 8.

    Song M, Yuan S, Yin J, Wang X, Meng Z, Wang H, Jiang G. Size-dependent toxicity of nano-C60 aggregates: more sensitive indication by apoptosis-related Bax translocation in cultured human cells. Environmental Science & Technology, 2012, 46(6):3457–3464

    Article  CAS  Google Scholar 

  9. 9.

    Lee J, Fortner J D, Hughes J B, Kim J H. Photochemical production of reactive oxygen species by C60 in the aqueous phase during UV irradiation. Environmental Science & Technology, 2007, 41(7):2529–2535

    Article  CAS  Google Scholar 

  10. 10.

    Fortner J D, Lyon D Y, Sayes CM, Boyd AM, Falkner J C, Hotze E M, Alemany L B, Tao Y J, Guo W, Ausman K D, Colvin V L, Hughes J B. C60 in water: nanocrystal formation and microbial response. Environmental Science & Technology, 2005, 39(11):4307–4316

    Article  CAS  Google Scholar 

  11. 11.

    Brant J, Lecoanet H, Hotze M, Wiesner M. Comparison of electrokinetic properties of colloidal fullerenes (n-C60) formed using two procedures. Environmental Science & Technology, 2005, 39(17):6343–6351

    Article  CAS  Google Scholar 

  12. 12.

    Xie B, Xu Z H, Guo W H, Li Q L. Impact of natural organic matter on the physicochemical properties of aqueous C60 nanoparticles. Environmental Science & Technology, 2008, 42(8):2853–2859

    Article  CAS  Google Scholar 

  13. 13.

    Chang X J, Vikesland P J. Effects of carboxylic acids on nC60 aggregate formation. Environmental Pollution, 2009, 157(4): 1072–1080

    Article  CAS  Google Scholar 

  14. 14.

    Chen K L, Elimelech M. Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. Journal of Colloid and Interface Science, 2007, 309(1):126–134

    Article  CAS  Google Scholar 

  15. 15.

    Hungerbuehler H, Guldi DM, Asmus K D. Incorporation of C60 into artificial lipid membranes. Journal of the American Chemical Society, 1993, 115(8):3386–3387

    Article  CAS  Google Scholar 

  16. 16.

    Andrievsky G V, Kosevich M V, Vovk M, Shelkovsky V S, Vashchenko L A. On the production of an aqueous colloidal solution of fullerenes. Journal of the Chemical Society. Chemical Communications, 1995, 12(12):1281–1282

    Article  Google Scholar 

  17. 17.

    Brant J A, Labille J, Bottero J Y, Wiesner M R. Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir, 2006, 22(8):3878–3885

    Article  CAS  Google Scholar 

  18. 18.

    Zhang B, Cho M, Hughes J B, Kim J H. Translocation of C60 from aqueous stable colloidal aggregates into surfactant micelles. Environmental Science & Technology, 2009, 43(24):9124–9129

    Article  CAS  Google Scholar 

  19. 19.

    Deguchi S, Alargova R G, Tsujii K. Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization. Langmuir, 2001, 17(19):6013–6017

    Article  CAS  Google Scholar 

  20. 20.

    Mchedlov-Petrossyan N O, Klochkov V K, Andrievsky G V. Colloidal dispersions of fullerene C60 in water: some properties and regularities of coagulation by electrolytes. Journal of the Chemical Society, Faraday Transactions, 1997, 93(24):4343–4346

    Article  CAS  Google Scholar 

  21. 21.

    Kumbhakar M, Goel T, Mukherjee T, Pal H. Role of micellar size and hydration on solvation dynamics: a temperature dependent study in Triton-X-100 and Brij-35 micelles. Journal of Physical Chemistry B, 2004, 108(50):19246–19254

    Article  CAS  Google Scholar 

  22. 22.

    Kumbhakar M, Nath S, Mukherjee T, Pal H. Solvation dynamics in triton-X-100 and triton-X-165 micelles: effect of micellar size and hydration. The Journal of Chemical Physics, 2004, 121(12): 6026–6033

    Article  CAS  Google Scholar 

  23. 23.

    Behera K, Dahiya P, Pandey S. Effect of added ionic liquid on aqueous Triton X-100 micelles. Journal of Colloid and Interface Science, 2007, 307(1):235–245

    Article  CAS  Google Scholar 

  24. 24.

    Kumbhakar M, Goel T, Mukherjee T, Pal H. Nature of the water molecules in the palisade layer of a triton X-100 micelle in the presence of added salts: a solvation dynamics study. Journal of Physical Chemistry B, 2005, 109(29):14168–14174

    Article  CAS  Google Scholar 

  25. 25.

    Das P, Mallick A, Purkayastha P, Haldar B, Chattopadhyay N. Fluorescence resonance energy transfer from TX-100 to 3-acetyl-4-oxo-6,7-dihydro-12 H-indolo-[2,3-a] quinolizine in premicellar and micellar environments. Journal of Molecular Liquids, 2007, 130(1–3):48–51

    Article  CAS  Google Scholar 

  26. 26.

    Haag W R, Hoigne J, Gassman E, Braun A M Singlet oxygen in surface waters-Part I: furfuryl alcohol as A Trapping agent. Chemosphere, 1984, 13(5–6):631–640

    Article  CAS  Google Scholar 

  27. 27.

    Li Y, Zhang W, Niu J F, Chen Y S. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 2012, 6(6):5164–5173

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bo Zhang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huo, J., Yu, Y., Ge, L. et al. Behavior of aqueous stable colloidal nano-C60 aggregates exposed to TX100 micelles under different environmental conditions. Front. Environ. Sci. Eng. 9, 197–205 (2015). https://doi.org/10.1007/s11783-014-0624-6

Download citation

Keywords

  • nano-C60 (nC60) aggregates
  • photochemical reactivity
  • artificial biological membrane