Skip to main content
Log in

Benzene removal by nano magnetic particles under continuous condition from aqueous solutions

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Benzene removal from aqueous solutions was evaluated using Fe3O4 nano magnetic particles (NM) in continuous condition. A 44 factorial design including initial benzene concentration, NM dose, contact time and pH was investigated in 16 experiments (Taguchi OA design). The results indicated that all factors were significant and the optimum condition was: pH 8, NM dose of 2000 mg·L−1, benzene concentrations of 100 mg·L−1 and contact time of 14 min. The maximum benzene uptake and distribution ratio in the optimum situation were 49.4 mg·g−1 and 38.4 L·g−1, respectively. The nano particles were shown to capture 98.7% of the benzene in optimum batch condition and 94.5% in continuous condition. The isotherm data proved that the Brunauer-Emmett-Teller model fit more closely and produced an isotherm constant (b) less than one, indicating favorable adsorption. Regeneration studies verified that the benzene adsorbed by the NM could be easily desorbed by temperature, and thereby, NM can be employed repeatedly in water and wastewater management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tang X, Xu Y, Shen W. Promoting effect of copper on the catalytic activity of MnOx-CeO2 mixed oxide for complete oxidation of benzene. Chemical Engineering Journal, 2008, 144(2): 175–180

    Article  CAS  Google Scholar 

  2. Aly Hassan A A, Sorial G A. Removal of benzene under acidic conditions in a controlled Trickle Bed Air Biofilter. Journal of Hazardous Materials, 2010, 184(1–3): 345–349

    Article  CAS  Google Scholar 

  3. van Afferden M, Rahman K Z, Mosig P, De Biase C, Thullner M, Oswald S E, Müller R A. Remediation of groundwater contaminated with MTBE and benzene: the potential of vertical-flow soil filter systems. Water Research, 2011, 45(16): 5063–5074

    Article  Google Scholar 

  4. Aurell J, Gullett B K, Tabor D, Touati A, Oudejans L. Semivolatile and volatile organic compound emissions from wood-fired hydronic heaters. Environmental Science & Technology, 2012, 46(14): 7898–7904

    Article  CAS  Google Scholar 

  5. Juretic D, Kusic H, Koprivanac N, Loncaric Bozic A. Photooxidation of benzene-structured compounds: Influence of substituent type on degradation kinetic and sum water parameters. Water Research, 2012, 46(9): 3074–3084

    Article  CAS  Google Scholar 

  6. Mathur A K, Majumder C B, Chatterjee S. Combined removal of BTEX in air stream by using mixture of sugar cane bagasse, compost and GAC as biofilter media. Journal of Hazardous Materials, 2007, 148(1–2): 64–74

    Article  CAS  Google Scholar 

  7. Aivalioti M, Vamvasakis I, Gidarakos E. BTEX and MTBE adsorption onto raw and thermally modified diatomite. Journal of Hazardous Materials, 2010, 178(1–3): 136–143

    Article  CAS  Google Scholar 

  8. Shim H, Shin E, Yang S T. A continuous fibrous-bed bioreactor for BTEX biodegradation by a co-culture of Pseudomonas putida and Pseudomonas fluorescens. Advances in Environmental Research, 2002, 7(1): 203–216

    Article  CAS  Google Scholar 

  9. Changsuphan A, Wahab M I B A, Kim Oanh N T. Removal of benzene by ZnO nanoparticles coated on porous adsorbents in presence of ozone and UV. Chemical Engineering Journal, 2012, 181–182(0): 215–221

    Article  Google Scholar 

  10. Long C, Li Q, Li Y, Liu Y, Li A, Zhang Q. Adsorption characteristics of benzene-chlorobenzene vapor on hypercrosslinked polystyrene adsorbent and a pilot-scale application study. Chemical Engineering Journal, 2010, 160(2): 723–728

    Article  CAS  Google Scholar 

  11. Lu C, Su F, Hu S. Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Applied Surface Science, 2008, 254(21): 7035–7041

    Article  CAS  Google Scholar 

  12. Zhang M, He F, Zhao D, Hao X. Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Water Research, 2011, 45(7): 2401–2414

    Article  CAS  Google Scholar 

  13. Wagner A, Cooper M, Ferdi S, Seifert J, Adrian L. Growth of Dehalococcoides mccartyi strain CBDB1 by reductive dehalogenation of brominated benzenes to benzene. Environmental Science & Technology, 2012, 46(16): 2318–2323

    Article  Google Scholar 

  14. Lin S H, Huang C Y. Adsorption of BTEX from aqueous solution by macroreticular resins. Journal of Hazardous Materials, 1999, 70(1–2): 21–37

    Article  CAS  Google Scholar 

  15. Carmody O, Frost R, Xi Y, Kokot S. Adsorption of hydrocarbons on organo-clays-implications for oil spill remediation. Journal of Colloid and Interface Science, 2007, 305(1): 17–24

    Article  CAS  Google Scholar 

  16. Bina B, Pourzamani H, Rashidi A, Amin M M. Ethylbenzene removal by carbon nanotubes from aqueous solution. Journal of Environmental and Public Health, 2011, 2012(2012): 1–8

    Google Scholar 

  17. Pourzamani H, Bina B, Rashidi A, Amin M M. Performance of raw and regenerated multi-and single-walled carbon nanotubes in xylene removal from aqueous solutions. International Journal of Environmental Health Engineering, 2012, 1(4): 20–23

    CAS  Google Scholar 

  18. Wang Y H, Lin S H, Juang R S. Removal of heavy metal ions from aqueous solutions using various low-cost adsorbents. Journal of Hazardous Materials, 2003, 102(2–3): 291–302

    Article  CAS  Google Scholar 

  19. Daifullah A A M, Girgis B S. Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 214(1–3): 181–193

    Article  CAS  Google Scholar 

  20. Koh S M, Dixon J B. Preparation and application of organominerals as sorbents of phenol, benzene and toluene. Applied Clay Science, 2001, 18(3–4): 111–122

    Article  CAS  Google Scholar 

  21. Bina B, Amin MM, Rashidi A, Pourzamani H. Benzene and toluene removal by carbon nanotubes from aqueous solution. Archives of Environmental Protection, 2012, 38(1): 3–25

    Article  CAS  Google Scholar 

  22. Matott L S, Rabideau A J. ISOFIT-a program for fitting sorption isotherms to experimental data. Environmental Modelling & Software, 2008, 23(5): 670–676

    Article  Google Scholar 

  23. Qadri S, Ganoe A, Haik Y. Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. Journal of Hazardous Materials, 2009, 169(1–3): 318–323

    Article  CAS  Google Scholar 

  24. Brasil J L, Ev R R, Milcharek C D, Martins L C, Pavan F A, dos Santos A A Jr, Dias S L, Dupont J, Zapata Noreña C P, Lima E C. Statistical design of experiments as a tool for optimizing the batch conditions to Cr(VI) biosorption on Araucaria angustifolia wastes. Journal of Hazardous Materials, 2006, 133(1–3): 143–153

    Article  CAS  Google Scholar 

  25. Chen J, Li G, Huang Y, Zhang H, Zhao H, An T. Optimization synthesis of carbon nanotubes-anatase TiO2 composite photocatalyst by response surface methodology for photocatalytic degradation of gaseous styrene. Applied Catalysis B: Environmental, 2012, 123–124(0): 69–77

    Article  Google Scholar 

  26. Sun L, An T C, Wan S G, Li G Y, Bao N Z, Hu X H, Fu J M, Sheng G Y. Effect of synthesis conditions on photocatalytic activities of nanoparticulate TiO2 thin films. Separation and Purification Technology, 2009, 68(1): 83–89

    Article  CAS  Google Scholar 

  27. Yang Y K, Chuang M T, Lin S S. Optimization of dry machining parameters for high-purity graphite in end milling process via design of experiments methods. Journal of Materials Processing Technology, 2009, 209(9): 4395–4400

    Article  CAS  Google Scholar 

  28. Bystrzejewski M, Pyrzynska K, Huczko A, Lange H. Carbonencapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon, 2009, 47(4): 1201–1204

    Article  CAS  Google Scholar 

  29. Shen Y F, Tang J, Nie Z H, Wang Y D, Ren Y, Zuo L. Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water. Bioresource Technology, 2009, 100(18): 4139–4146

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Pourzamani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amin, M.M., Bina, B., Majd, A.M.S. et al. Benzene removal by nano magnetic particles under continuous condition from aqueous solutions. Front. Environ. Sci. Eng. 8, 345–356 (2014). https://doi.org/10.1007/s11783-013-0574-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-013-0574-4

Keywords

Navigation