Skip to main content
Log in

Predictive models on photolysis and photoinduced toxicity of persistent organic chemicals

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Photodegradation is a major abiotic transformation pathway of toxic chemicals in the environment, which in some cases might lead to photoinduced toxicities. The data on photodegradation kinetics and photoinduced toxicities of organic chemicals are essential for their risk assessment. However, the relevant data are only available for a limited number of chemicals, due to the difficulty and high cost of experimental determination. Quantitative structure-activity relationship (QSAR) models that relate photodegradation kinetics or photoinduced toxicity of organic chemicals with their physicochemical properties or molecular structural descriptors may enable simple and fast estimation of their photochemical behaviors. This paper reviews the QSAR models on photodegradation quantum yields and rate constants for toxic organic chemicals in different media including liquid phase, gaseous phase, surfaces of plant leaves, and QSAR models on photoinduced toxicity of organic chemicals to plants, bacteria, and aquatic invertebrates. Further prospects for QSAR model development on photodegradation kinetics and photoinduced toxicity of refractory organic chemicals are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang Q, Huang J, Yu G. Polychlorinated dibenzo-p-dioxins and dibenzofurans emissions from open burning of crop residues in China between 1997 and 2004. Environmental Pollution, 2008, 151(1): 39–46

    Article  CAS  Google Scholar 

  2. Wang B, Huang J, Deng S B, Yang X L, Yu G. Addressing the environmental risk of persistent organic pollutants in China. Frontiers of Environmental Science & Engineering, 2012, 6(1): 2–16

    Article  Google Scholar 

  3. Niu J F, Chen J W, Martens D, Henkelmann B, Quan X, Yang F L, Seidlitz H K, Schramm K W. The role of UV-B on the degradation of PCDD/Fs and PAHs sorbed on surfaces of spruce (Picea abies (L.) Karst.) needles. Science of the Total Environment, 2004, 322(1–3): 231–241

    Article  CAS  Google Scholar 

  4. Meharg A A, Killham K. Environment: a pre-industrial source of dioxins and furans. Nature, 2003, 421(6926): 909–910

    Article  CAS  Google Scholar 

  5. Heilmann C, Budtz-Jørgensen E, Nielsen F, Heinzow B, Weihe P, Grandjean P. Serum concentrations of antibodies against vaccine toxoids in children exposed perinatally to immunotoxicants. Environmental Health Perspectives, 2010, 118(10): 1434–1438

    Article  CAS  Google Scholar 

  6. de Boer J, Wester P G, Klamer H J, Lewis W E, Boon J P. Do flame retardants threaten ocean life? Nature, 1998, 394(6688): 28–29

    Article  Google Scholar 

  7. Bunge M, Adrian L, Kraus A, Opel M, Lorenz WG, Andreesen J R, Görisch H, Lechner U. Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature, 2003, 421(6921): 357–360

    Article  CAS  Google Scholar 

  8. Kim K, Kim K S, Son S H, Cho J, Kim Y C. Supercritical water oxidation of transformer oil contaminated with PCBs—A road to commercial plant from bench-scale facility. Journal of Supercritical Fluids, 2011, 58(1): 121–130

    Article  CAS  Google Scholar 

  9. Granelli L, Eriksson J, Bergman Å. Sodium borohydride reduction of individual polybrominated diphenyl ethers. Chemosphere, 2012, 86(10): 1008–1012

    Article  CAS  Google Scholar 

  10. Niu J F, Chen J W, Martens D, Quan X, Yang F L, Kettrup A, Schramm K W. Photolysis of polycyclic aromatic hydrocarbons adsorbed on spruce [Picea abies (L.) Karst] needles under sunlight irradiation. Environmental Pollution, 2003, 123(1): 39–45

    Article  CAS  Google Scholar 

  11. Lin J, Chen J W, Wang Y, Cai X Y, Wei X, Qiao X. More toxic and photoresistant products from photodegradation of fenoxaprop-pethyl. Journal of Agricultural and Food Chemistry, 2008, 56(17): 8226–8230

    Article  CAS  Google Scholar 

  12. Niu J F, Yu G. Prediction of the ability of PAHs to be photocytotoxic to a cell line from the rainbow trout (Oncorhynchus mykiss) gill. Bulletin of Environmental Contamination and Toxicology, 2004, 73(4): 659–665

    CAS  Google Scholar 

  13. Paasivirta J, Sinkkonen S. Environmentally relevant properties of all 209 polychlorinated biphenyl congeners for modeling their fate in different natural and climatic conditions. Journal of Chemical & Engineering Data, 2009, 54(4): 1189–1213

    Article  CAS  Google Scholar 

  14. Niu J F, Chen J W, Henkelmann B, Quan X, Yang F L, Kettrup A, Schramm K W. Photodegradation of PCDD/Fs adsorbed on spruce (Picea abies (L.) Karst.) needles under sunlight irradiation. Chemosphere, 2003, 50(9): 1217–1225

    Article  CAS  Google Scholar 

  15. Niu J F, Yu G, Liu X T. Advances in photolysis of persistent organic pollutants in water. Progress in Chemistry, 2005, 17(5): 938–948 (in Chinese)

    CAS  Google Scholar 

  16. Huang X D, Krylov S N, Ren L, McConkey B J, Dixon D G, Greenberg B M. Mechanistic quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons: II. An empirical model for the toxicity of 16 polycyclic aromatic hydrocarbons to the duckweed Lemna gibba L. G-3. Environmental Toxicology and Chemistry, 1997, 16(11): 2296–2301

    CAS  Google Scholar 

  17. Foote C S. Type I and type II mechanisms in photodynamic action. ACS Symposium Series, 1987, 339:22–38

    Article  CAS  Google Scholar 

  18. Huang X D, Dixon D G, Greenberg B M. Impacts of UV radiation and photomodification on the toxicity of PAHs to higher plant Lemna gibba (duckweed). Environmental Toxicology and Chemistry, 1993, 12(6): 1067–1077

    CAS  Google Scholar 

  19. Oris J T, Giesy J P Jr. The photoenhanced toxicity of anthracene to juvenile sunfish (Lepomis spp.). Aquatic Toxicology, 1985, 6(2): 133–146

    Article  CAS  Google Scholar 

  20. Huang X D, Dixon D G, Greenberg B M. Increased polycyclic aromatic hydrocarbon toxicity following their photomodification in natural sunlight: impacts on the duckweed Lemna gibba L. G-3. Ecotoxicology and Environmental Safety, 1995, 32(2): 194–200

    Article  CAS  Google Scholar 

  21. Boese B L, Lamberson J O, Swartz R C, Ozretich R J. Photoinduced toxicity of fluoranthene to seven marine benthic crustaceans. Archives of Environmental Contamination and Toxicology, 1997, 32(4): 389–393

    Article  CAS  Google Scholar 

  22. Diamond S A, Mount D R, Burkhard L P, Ankley G T, Makynen E A, Leonard E N. Effect of irradiance spectra on the photoinduced toxicity of three polycyclic aromatic hydrocarbons. Environmental Toxicology and Chemistry, 2000, 19(5): 1389–1396

    Article  CAS  Google Scholar 

  23. Wernersson A S, Dave G. Phototoxicity identification by solid phase extraction and photoinduced toxicity to Daphnia magna. Archives of Environmental Contamination and Toxicology, 1997, 32(3): 268–273

    Article  CAS  Google Scholar 

  24. Zhang Q, Huang J, Yu G. Prediction of soot-water partition coefficients for selected persistent organic pollutants from theoretical molecular descriptors. Progress in Natural Science-Materials International, 2008, 18(7): 867–872

    Article  CAS  Google Scholar 

  25. Yang P, Chen J W, Chen S, Yuan X, Schramm K W, Kettrup A. QSPR models for physicochemical properties of polychlorinated diphenyl ethers. Science of the Total Environment, 2003, 305(1–3): 65–76

    Article  CAS  Google Scholar 

  26. Tao X Q, Lu G N, Fei H L, Zhou K Q. Estimation of dissolvability of chloric and alkyl benzene derivatives using quantum chemical descriptors and partial least squares. Journal of Theoretical and Computational Chemistry, 2008, 7(5): 989–999

    Article  CAS  Google Scholar 

  27. Wang B, Yu G, Huang J. Application of QSAR/QSPR in fate evaluation and risk assessment of POPs. Progress in Chemistry, 2007, 19(10): 1612–1619 (in Chinese)

    CAS  Google Scholar 

  28. Wang Y N, Chen J W, Li X H, Wang B, Cai X, Huang L. Predicting rate constants of hydroxyl radical reactions with organic pollutants: algorithm, validation, applicability domain, and mechanistic interpretation. Atmospheric Environment, 2009, 43(5): 1131–1135

    Article  CAS  Google Scholar 

  29. Zheng G, Huang W H, Lu X H. Prediction of n-octanol/water partition coefficients for polychlorinated dibenzo-p-dioxins using a general regression neural network. Analytical and Bioanalytical Chemistry, 2003, 376(5): 680–685 PMID:12761606

    Article  CAS  Google Scholar 

  30. Škrbić B, Onjia A. Prediction of the Lee retention indices of polycyclic aromatic hydrocarbons by artificial neural network. Journal of Chromatography A, 2006, 1108(2): 279–284

    Article  Google Scholar 

  31. Wang Y, Chen J W, Li F, Qin H, Qiao X L, Hao C. Modeling photoinduced toxicity of PAHs based on DFT-calculated descriptors. Chemosphere, 2009, 76(7): 999–1005

    Article  CAS  Google Scholar 

  32. Chen J W, Quan X, Peijnenburg W J G M, Yang F L. Quantitative structure-property relationships (QSPRs) on direct photolysis quantum yields of PCDDs. Chemosphere, 2001, 43(2): 235–241

    Article  CAS  Google Scholar 

  33. Chen J W, Quan X, Schramm K W, Kettrup A, Yang F L. Quantitative structure-property relationships (QSPRs) on direct photolysis of PCDDs. Chemosphere, 2001, 45(2): 151–159

    Article  CAS  Google Scholar 

  34. Newsted J L, Giesy J P. Predictive models for photoinduced acute toxicity of polycyclic aromatic hydrocarbons to Daphnia magna, Strauss (Cladocera, Crustacea). Environmental Toxicology and Chemistry, 1987, 6(6): 445–461

    CAS  Google Scholar 

  35. El-Alawi Y S, Huang X D, Dixon D G, Greenberg B M. Quantitative structure-activity relationship for the photoinduced toxicity of polycyclic aromatic hydrocarbons to the luminescent bacteria Vibrio fischeri. Environmental Toxicology and Chemistry, 2002, 21(10): 2225–2232

    CAS  Google Scholar 

  36. Mezey P G, Zimpel Z, Warburton P, Walker P D, Irvine D G, Huang X D, Dixon D G, Greenbenrg B M. Use of quantitative shapeactivity relationships to model the photoinduced toxicity of polycyclic aromatic hydrocarbons electron density shape features accurately predict toxicity. Environmental Toxicology and Chemistry, 1998, 17(7): 1207–1215

    CAS  Google Scholar 

  37. Chen J W, Peijnenburg W J G M, Quan X, Yang F L. Quantitative structure-property relationships for direct photolysis quantum yields of selected polycyclic aromatic hydrocarbons. Science of the Total Environment, 2000, 246(1): 11–20

    Article  CAS  Google Scholar 

  38. Chen J W, Peijnenburg W J G M, Quan X, Chen S, Zhao Y Z, Yang F L. The use of PLS algorithms and quantum chemical parameters derived from PM3 hamiltonian in QSPR studies on direct photolysis quantum yields of substituted aromatic halides. Chemosphere, 2000, 40(12): 1319–1326

    Article  CAS  Google Scholar 

  39. Chen JW, Kong L R, Zhu C M, Huang Q G, Wang L S. Correlation between photolysis rate constants of polycyclic aromatic hydrocarbons and frontier molecular orbital energy. Chemosphere, 1996, 33(6): 1143–1150

    Article  CAS  Google Scholar 

  40. Chen J W, Peijnenburg W J G M, Quan X, Chen S, Martens D, Schramm K W, Kettrup A. Is it possible to develop a QSPR model for direct photolysis half-lives of PAHs under irradiation of sunlight? Environmental Pollution, 2001, 114(1): 137–143

    Article  CAS  Google Scholar 

  41. Lu G N, Dang Z, Tao X Q, Peng P A, Zhang D C. QSPR study on direct photolysis half-lives of PAHs in water surface. Journal of Theoretical and Computational Chemistry, 2005, 4(3): 811–822

    Article  CAS  Google Scholar 

  42. Lu G N, Dang Z, Tao X Q, Yang C, Yi X Y. Modeling and prediction of photolysis half-lives of polycyclic aromatic hydrocarbons in aerosols by quantum chemical descriptors. Science of the Total Environment, 2007, 373(1): 289–296

    Article  CAS  Google Scholar 

  43. Chen J W, Quan X, Yan Y, Yang F L, Peijnenburg W J G M. Quantitative structure-property relationship studies on direct photolysis of selected polycyclic aromatic hydrocarbons in atmospheric aerosol. Chemosphere, 2001, 42(3): 263–270

    Article  CAS  Google Scholar 

  44. Zhou Z M, Li X L, Jing G H. Quantitative models for the structure and photodegradation of polycyclic aromatic hydrocarbons. Chinese Journal of Structural Chemistry, 2010, 29(2): 205–212 (In Chinese)

    CAS  Google Scholar 

  45. Niu J F, Sun P, Schramm K W. Photolysis of polycyclic aromatic hydrocarbons associated with fly ash particles under simulated sunlight irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 186(1): 93–98

    Article  CAS  Google Scholar 

  46. Krylov S N, Huang X D, Zeiler L F, Dixon D G, Greenberg B M. Mechanistic quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons: I. Physical model based on chemical kinetics in a two-compartment system. Environmental Toxicology and Chemistry, 1997, 16(11): 2283–2295

    CAS  Google Scholar 

  47. Chen J W, Quan X, Yang F L, Peijnenburg W J G M. Quantitative structure-property relationships on photodegradation of PCDD/Fs in cuticular waxes of laurel cherry (Prunus laurocerasus). Science of the Total Environment, 2001, 269(1–3): 163–170

    Article  CAS  Google Scholar 

  48. Niu J F, Huang L P, Chen J W, Yu G, Schramm K W. Quantitative structure-property relationships on photolysis of PCDD/Fs adsorbed to spruce (Picea abies (L.) Karst.) needle surfaces under sunlight irradiation. Chemosphere, 2005, 58(7): 917–924

    Article  CAS  Google Scholar 

  49. Katritzky A R, Slavov S H, Stoyanova-Slavova I B, Karelson M. Correlation of the photolysis half-lives of polychlorinated dibenzop-dioxins and dibenzofurans with molecular structure. Journal of Physical Chemistry A, 2010, 114(7): 2684–2688

    Article  CAS  Google Scholar 

  50. Wang L, Liu X H, Hou J. Prediction of photolysis half-lives of PCDFs with the electrotopological state indices. Acta Chimica Sinica, 2007, 65(3): 184–190 (in Chinese)

    CAS  Google Scholar 

  51. Yuan Y N, Zhang R S, Hu R J. Prediction of photolysis of PCDD/Fs adsorbed to spruce [Picea abies (L.) Karst.] needle surfaces under sunlight irradiation based on projection pursuit regression. QSAR & Combinatorial Science, 2009, 28(2): 155–162

    Article  CAS  Google Scholar 

  52. Niu J F, Chen J, Yu G, Schramm K W. Quantitative structureproperty relationships on direct photolysis of PCDD/Fs on surfaces of fly ash. SAR and QSAR in Environmental Research, 2004, 15(4): 265–277

    Article  CAS  Google Scholar 

  53. Bao Y P, Huang Q Y, Wang W L, Xu J J, Jiang F, Feng C H. Application of quantum chemical descriptor in quantitative structure-property relationship for the prediction of photolysis half-life of PCBs in water. Frontiers of Environmental Science & Engineering in China, 2011, 5(4): 505–511

    Article  CAS  Google Scholar 

  54. Li X, Fang L, Huang J, Yu G. Photolysis of mono-through decachlorinated biphenyls by ultraviolet irradiation in n-hexane and quantitative structure-property relationship analysis. Journal of Environmental Sciences-China, 2008, 20(6): 753–759

    Article  CAS  Google Scholar 

  55. Niu J F, Yang Z F, Shen Z Y, Wang L L. QSPRs for the prediction of photodegradation half-life of PCBs in n-hexane. SAR and QSAR in Environmental Research, 2006, 17(2): 173–182

    Article  CAS  Google Scholar 

  56. Ohura T, Amagai T, Makino M. Behavior and prediction of photochemical degradation of chlorinated polycyclic aromatic hydrocarbons in cyclohexane. Chemosphere, 2008, 70(11): 2110–2117

    Article  CAS  Google Scholar 

  57. Niu J F, Wang L L, Yang Z F. QSPRs on photodegradation half-lives of atmospheric chlorinated polycyclic aromatic hydrocarbons associated with particulates. Ecotoxicology and Environmental Safety, 2007, 66(2): 272–277

    Article  CAS  Google Scholar 

  58. Niu J F, Yang Z F, Shen Z Y, Long X X. Estimation of photolysis lifetimes of the nitronaphthalenes and methylnitronaphthalenes. Bulletin of Environmental Contamination and Toxicology, 2005, 75(4): 813–819

    Article  CAS  Google Scholar 

  59. Chen J W, Wang D G, Wang S L, Qiao X, Huang L. Quantitative structure-property relationships for direct photolysis of polybrominated diphenyl ethers. Ecotoxicology and Environmental Safety, 2007, 66(3): 348–352

    Article  CAS  Google Scholar 

  60. Niu J F, Shen Z Y, Yang Z F, Long X X, Yu G. Quantitative structure-property relationships on photodegradation of polybrominated diphenyl ethers. Chemosphere, 2006, 64(4): 658–665

    Article  CAS  Google Scholar 

  61. Fang L, Huang J, Yu G, Li X. Quantitative structure-property relationship studies for direct photolysis rate constants and quantum yields of polybrominated diphenyl ethers in hexane and methanol. Ecotoxicology and Environmental Safety, 2009, 72(5): 1587–1593

    Article  CAS  Google Scholar 

  62. Heimstad E S, Bastos P M, Eriksson J, Bergman K, Harju M. Quantitative structure-photodegradation relationships of polybrominated diphenyl ethers, phenoxyphenols and selected organochlorines. Chemosphere, 2009, 77(7): 914–921

    Article  CAS  Google Scholar 

  63. Chen J W, Peijnenburg W J G M, Wang L S. Using PM3 Hamiltonian, factor analysis and regression analysis in developing quantitative structure-property relationships for the photohydrolysis quantum yields of substituted aromatic halides. Chemosphere, 1998, 36(13): 2833–2853

    Article  CAS  Google Scholar 

  64. Peijnenburg W J G M, De Beer K G M, DeHaan M W A, Den Hollander H A, Stegeman M H L, Verboom H. Development of a structure-reactivity relationship for the photohydrolysis of substituted aromatic halides. Environmental Science & Technology, 1992, 26(11): 2116–2121

    Article  CAS  Google Scholar 

  65. Chen J W, Peijnenburg W J G M, Quan X, Zhao Y Z, Xue D M, Yang F L. The application of quantum chemical and statistical technique in developing quantitative structure-property relationships for the photohydrolysis quantum yields of substituted aromatic halides. Chemosphere, 1998, 37(6): 1169–1186

    Article  CAS  Google Scholar 

  66. Ioele G, De Luca M, Oliverio F, Ragno G. Prediction of photosensitivity of 1,4-dihydropyridine antihypertensives by quantitative structure-property relationship. Talanta, 2009, 79(5): 1418–1424

    Article  CAS  Google Scholar 

  67. Zepp R G, Schlotzhauer P F. Photoreactivity of selected aromatic hydrocarbons in water. In: Jones P R, Leber P, eds. Polynuclear Aromatic Hydrocarbons. Ann Arbor: Ann Arbor Science Publishers, 1979, 141–158

    Google Scholar 

  68. Mill T, Mabey W R, Lan B Y, Baraze A. Photolysis of polycyclic aromatic hydrocarbons in water. Chemosphere, 1981, 10(11–12): 1281–1290

    Article  CAS  Google Scholar 

  69. Miller J S, Olejnik D. Photolysis of polycyclic aromatic hydrocarbons in water. Water Research, 2001, 35(1): 233–243

    Article  CAS  Google Scholar 

  70. Lehto K M, Vuorimaa E, Lemmetyinen H. Photolysis of polycyclic aromatic hydrocarbons (PAHs) in dilute aqueous solutions detected by fluorescence. Journal of Photochemistry and Photobiology A Chemistry, 2000, 136(1–2): 53–60

    Article  CAS  Google Scholar 

  71. Smith J H, Mabey W R, Bahonos N, Holt B R, Lee S S, Chou T W, Benberger D C, Mill T. Environmental pathways of selected chemicals in fresh water systems: Part II. Laboratory studies (Interagency Energy-Environment Research Report EPA-600/7-78-074). Athenes: Environmental Reserch Office of Research and Development, US Environmental Protection Agency, 1979

    Google Scholar 

  72. Tysklind M, Lundgren K, Rappe C, Eriksson L, Jonsson J, Sjostrom M, Ahlborg U G. Multivariate characterization and modeling of polychlorinated dibenzo-p-dioxins and dibenzofurans. Environmental Science & Technology, 1992, 26(5): 1023–1030

    Article  CAS  Google Scholar 

  73. Tysklind M, Rappe C. Photolytic transformation of polychlorinated dioxins and dibenzofurans in fly ash. Chemosphere, 1991, 23(8–10): 1365–1375

    Article  CAS  Google Scholar 

  74. Koester C J, Hites R A. Photodegradation of polychlorinated dioxins and dibenzofurans absorbed to fly ash. Environmental Science & Technology, 1992, 26(3): 502–507

    Article  CAS  Google Scholar 

  75. Korfmacher WA, Natusch D F S, Taylor D R, Mamantov G, Wehry E L. Oxidative transformations of polycyclic aromatic hydrocarbons adsorbed on coal fly ash. Science, 1980, 207(4432): 763–765

    Article  CAS  Google Scholar 

  76. Korfmacher W A, Wehry E L, Mamantov G, Natusch D F S. Resistance to photochemical decomposition of polycyclic aromatic hydrocarbons vapor-adsorbed on coal fly ash. Environmental Science & Technology, 1980, 14(9): 1094–1099

    Article  CAS  Google Scholar 

  77. Yokley R A, Garrison A A, Wehry E L, Mamantov G. Photochemical transformation of pyrene and benzo[a]pyrene vapor-deposited on eight coal stack ashes. Environmental Science & Technology, 1986, 20(1): 86–90

    Article  CAS  Google Scholar 

  78. Schuler F, Schmid P, Schlatter C H. Photodegradation of polychlorinated dibenzo-p-dioxins and dibenzofuzans in cuticular waxes of laurel cherry (Prunus laurocerasus). Chemosphere, 1998, 36(1): 21–34

    Article  CAS  Google Scholar 

  79. McCrady J K, Maggard S P. Uptake and photodegradation of 2,3,7,8-tetrachlorodibenzo-p-dioxin sorbed to grass foliage. Environmental Science & Technology, 1993, 27(2): 343–350

    Article  CAS  Google Scholar 

  80. McConkey B J, Duxbury C L, Dixon D G, Greenberg B M. Toxicity of a PAH photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: effects of phenanthrene and its primary photoproduct, phenanthrenequinone. Environmental Toxicology and Chemistry, 1997, 16(5): 892–899

    CAS  Google Scholar 

  81. Little E E, Cleveland L, Calfee R, Barron M G. Assessment of the photoenhanced toxicity of a weathered oil to the tidewater silverside. Environmental Toxicology and Chemistry, 2000, 19(4): 926–932

    Article  CAS  Google Scholar 

  82. Huovinen P S, Soimasuo M R, Oikari A O J. Photoinduced toxicity of retene to Daphnia magna under enhanced UV-B radiation. Chemosphere, 2001, 45(4–5): 683–691

    Article  CAS  Google Scholar 

  83. Apel K, Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 2004, 55(1): 373–399

    Article  CAS  Google Scholar 

  84. Richard A M. Future of toxicology—predictive toxicology: an expanded view of “chemical toxicity”. Chemical Research in Toxicology, 2006, 19(10): 1257–1262

    Article  CAS  Google Scholar 

  85. Feng J, Lurati L, Ouyang H J, Robinson T, Wang Y Y, Yuan S L, Young S S. Predictive toxicology: benchmarking molecular descriptors and statistical methods. Journal of Chemical Information and Computer Sciences, 2003, 43(5): 1463–1470

    CAS  Google Scholar 

  86. Fielden M R, Zacharewski T R. Challenges and limitations of gene expression profiling in mechanistic and predictive toxicology. Toxicological Sciences, 2001, 60(1): 6–10

    Article  CAS  Google Scholar 

  87. Benigni R, Giuliani A. Putting the predictive toxicology challenge into perspective: reflections on the results. Bioinformatics, 2003, 19(10): 1194–1200

    Article  CAS  Google Scholar 

  88. Larson R A, Berenbaum M R. Environmental phototoxicity. Environmental Science & Technology, 1988, 22(4): 354–360

    Article  CAS  Google Scholar 

  89. Morgan D D, Warshawsky D, Atkinson T. The relationship between carcinogenic activities of polycyclic aromatic hydrocarbons and their singlet, triplet, and singlet-triplet splitting energies of phosphorescence lifetimes. Photochemistry and Photobiology, 1977, 25(1): 31–38

    Article  CAS  Google Scholar 

  90. Mekenyan O G, Ankley G T, Veith G D, Call D J. QSAR for photoinduced toxicity: I. Acute lethality of polycyclic aromatic hydrocarbons to Daphnia magna. Chemosphere, 1994, 28(3): 567–582

    Article  CAS  Google Scholar 

  91. Kochevar I E. Mechanisms of drug photosensitization. Photochemistry and Photobiology, 1987, 45(6): 891–895

    Article  CAS  Google Scholar 

  92. Ankley G T, Collyard S A, Monson P D, Kosian P A. Influence of UV light on the toxicity of sediments contaminated with PAHs. Environmental Toxicology and Chemistry, 1994, 13(11): 456–466

    Article  Google Scholar 

  93. PetiteJ M, Ormrod D P. Sulphur-dioxide and nitrogen-dioxide affect growth, gas-exchange and water relations of potato plants. Journal of the American Society for Horticultural Science, 1992, 117(1): 146–153

    Google Scholar 

  94. Sanderman G, Böger P. Sites of herbicide inhibition at the photosynthetic apparatus. In: Staehelin L A, Arntzen C J, editors. Encyclopedia of Plant Physiology. New series, vol 19. Photosynthesis III. New York: Spinger, 1986, 595–602

    Google Scholar 

  95. Schmidt W, Neubauer C, Kolbowski J, Schreiber U, Urbach W. Comparison of effects of air pollutants (SO2, O3, NO2) on intact leaves by measurements of chlorophyll fluorescence and P700 absorbance changes. Photosynthesis Research, 1990, 25(3): 241–248

    Article  CAS  Google Scholar 

  96. Moreland D E. Mechanisms of action of herbicides. Annual Review Plant Physiology and Plant Molecular Biology, 1980, 31: 365–385

    Google Scholar 

  97. Greenberg BM, Huang X D, Dixon D G. Applications of the aquatic higher-plant Lemna gibba for ecotoxicological assessment. Journal of Aquatic Ecosystem Health, 1992, 1(2): 147–155

    Article  Google Scholar 

  98. Hebert P D N. The population biology of Daphnia (Crustacea, Daphnidae). Biological Reviews, 1978, 53(3): 387–426

    Article  Google Scholar 

  99. Lampi M A, Gurska J, Huang X D, Dixon D G, Greenberg B M. A predictive quantitative structure-activity relationship model for the photoinduced toxicity of polycyclic aromatic hydrocarbons to Daphnia magna with the use of factors for photosensitization and photomodification. Environmental Toxicology and Chemistry, 2007, 26(3): 406–415

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q. Predictive models on photolysis and photoinduced toxicity of persistent organic chemicals. Front. Environ. Sci. Eng. 7, 803–814 (2013). https://doi.org/10.1007/s11783-013-0547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-013-0547-7

Keywords

Navigation