Skip to main content

The energy-environment nexus: aerosol science and technology enabling solutions

Abstract

Energy issues are important and consumption is slated to increase across the globe in the future. The energy-environment nexus is very important as strategies to meet future energy demand are developed. To ensure sustainable growth and development, it is essential that energy production is environmentally benign. There are two temporal issues—one that is immediate, and needs to address the environmental compliance of energy generation from fossil fuel sources; and second that is the need to develop newer alternate and more sustainable approaches in the future. Aerosol science and technology is an enabling discipline that addresses the energy issue over both these time scales. The paper is a review of aspects of aerosol science and engineering that helps address carbon neutrality of fossil fuels. Advanced materials to meet these challenges are discussed. Future approaches to effective harvesting of sunlight that are enabled by aerosol studies are discussed.

This is a preview of subscription content, access via your institution.

References

  1. Cabrera S, Jaffe K. On the energetic cost of human societies: Energy consumption as an econometric index. Interciencia, 1998, 23(6): 350–354

    Google Scholar 

  2. Thimsen E J. Metal Oxide Semiconductors for Solar Energy Harvesting. Dissertation for the Doctoral Degree. St. Louis: Washington University in St. Louis, 2009

    Google Scholar 

  3. United Nations Development Program. Energizing the Millennium Development Goals: A Guild to Energy’s Role in Reducing Poverty, 2005

  4. Zakaria F. The Post-American World. 1st ed. New York: W.W. Norton & Co., 2008

    Google Scholar 

  5. McDonnell Academy Global Energy and Environmental Partnership (MAGEEP). Report on Global Energy Future. http://mageep.wustl.edu. St. Louis: Washington University in St. Louis, 2010

    Google Scholar 

  6. Metz B, Davidson O, de Coninck H, Loos M, Meyer C. IPCC Special Report on Carbon Dioxide Capture and Storage. New York, 2005

  7. Roy S C, Varghese O K, Paulose M, Grimes C A. Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano, 2010, 4(3): 1259–1278

    Article  CAS  Google Scholar 

  8. Halmann M, Steinberg M. Greenhous Gas Carbon Dioxide Mitigation: Science and Technology. Boca Raton: Lewis Publishers, 2000

    Google Scholar 

  9. Usubharatana P, McMartin D, Veawab A, Tontiwachwuthikul P. Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial & Engineering Chemistry Research, 2006, 45(8): 2558–2568

    Article  CAS  Google Scholar 

  10. Kaneco S, Shimizu Y, Ohta K, Mizuno T. Photocatalytic reduction of high pressure carbon dioxide using TiO2 powders with a positive hole scavenger. Journal of Photochemistry and Photobiology A: Chemistry 1998, 115(3): 223–226

    Article  CAS  Google Scholar 

  11. Tseng I H, Chang W C, Wu J C S. Photoreduction of CO2 using solgel derived titania and titania-supported copper catalysts. Applied Catalysis B: Environmental, 2002, 37(1): 37–48

    Article  CAS  Google Scholar 

  12. Xia X H, Jia Z H, Yu Y, Liang Y, Wang Z, Ma L L. Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon, 2007, 45(4): 717–721

    Article  CAS  Google Scholar 

  13. Varghese O K, Paulose M, Latempa T J, Grimes C A. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Letters, 2009, 9(2): 731–737

    Article  CAS  Google Scholar 

  14. Wu J C S. Photocatalytic Reduction of Greenhouse Gas CO2 to Fuel. Catalysis Surveys from Asia, 2009, 13(1): 30–40

    Article  CAS  Google Scholar 

  15. Ikeue K, Yamashita H, Anpo M, Takewaki T. Photocatalytic reduction of CO2 with H2O on Ti-beta zeolite photocatalysts: effect of the hydrophobic and hydrophilic properties. Journal of Physical Chemistry B, 2001, 105(35): 8350–8355

    Article  CAS  Google Scholar 

  16. Woolerton T W, Sheard S, Reisner E, Pierce E, Ragsdale S W, Armstrong F A. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. Journal of the American Chemical Society, 2010, 132(7): 2132–2133

    Article  CAS  Google Scholar 

  17. Wang C J, Thompson R L, Baltrus J, Matranga C. Visible light photoreduction of CO2 using CdSe/Pt/TiO2 heterostructured catalysts. Journal of Physical Chemistry Letters, 2010, 1(1): 48–53

    Article  CAS  Google Scholar 

  18. Li Y, Wang W N, Zhan Z L, Woo M H, Wu C Y, Biswas P. Photocatalytic reduction of CO2 with H2O on mesoporous silica supported Cu/TiO2 catalysts. Applied Catalysis B: Environmental, 2010, 100(1–2): 386–392

    Article  CAS  Google Scholar 

  19. Chen Q, Qian Y. Carbon dioxide thermal system: an effective method for the reduction of carbon dioxide. Chemical Communications, 2001, 15: 1402–1403

    Article  Google Scholar 

  20. Chueh W C, Falter C, Abbott M, Scipio D, Furler P, Haile S M, Steinfeld A. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science, 2010, 330(6012): 1797–1801

    Article  CAS  Google Scholar 

  21. Chueh WC, Haile SM. Ceria as a thermochemical reaction medium for selectively generating syngas or methane from H2O and CO2. ChemSusChem, 2009, 2(8): 735–739

    Article  CAS  Google Scholar 

  22. Jin W Q, Zhang C, Chang X F, Fan Y Q, Xing W H, Xu N P. Efficient catalytic decomposition of CO2 to CO and O2 over Pd/mixed-conducting oxide catalyst in an oxygen-permeable membrane reactor. Environmental Science & Technology, 2008, 42(8): 3064–3068

    Article  CAS  Google Scholar 

  23. Isaacs M, Canales J C, Aguirre M J, Estiu G, Caruso F, Ferraudi G, Costamagna J. Electrocatalytic reduction of CO2 by azamacrocyclic complexes of Ni(II), Co(II), and Cu(II). Theoretical contribution to probable mechanisms. Inorganica Chimica Acta, 2002, 339: 224–232

    CAS  Google Scholar 

  24. Siwek H, Tokarz W, Piela P, Czerwinski A. Electrochemical behavior of CO, CO2 and methanol adsorption products formed on Pt-Rh alloys of various surface compositions. Journal of Power Sources, 2008, 181(1): 24–30

    Article  CAS  Google Scholar 

  25. Raebiger JW, Turner JW, Noll B C, Curtis C J, Miedaner A, Cox B, DuBois D L. Electrochemical reduction of CO2 to CO catalyzed by a bimetallic palladium complex. Organometallics, 2006, 25(14): 3345–3351

    Article  CAS  Google Scholar 

  26. Kim J S, Ahn J R. Characterization of wet processed (Ni, Zn)-ferrites for CO2 decomposition. Journal of Materials Science, 2001, 36(19): 4813–4816

    Article  CAS  Google Scholar 

  27. Park J N, McFarland E W. A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2. Journal of Catalysis, 2009, 266(1): 92–97

    Article  CAS  Google Scholar 

  28. Scibioh M A, Vijayaraghavan V R. Electrocatalytic reduction of carbon dioxide: Its relevance and importance. Journal of Scientific and Industrial Research, 1998, 57(3): 111–123

    CAS  Google Scholar 

  29. Siwek H, Lukaszewski M, Czerwiński A. Electrochemical study on the adsorption of carbon oxides and oxidation of their adsorption products on platinum group metals and alloys. Physical Chemistry Chemical Physics, 2008, 10(25): 3752–3765

    Article  CAS  Google Scholar 

  30. Pandey K K. Reactivities of carbonyl sulfide (CoS), carbon-disulfide (CS2) and carbon-dioxide (CO2) with transition-metal complexes. Coordination Chemistry Reviews, 1995, 140: 37–114

    Article  CAS  Google Scholar 

  31. Dubois D L. Development of transition metal phosphine complexes as electrocatalysts for CO2 and CO reduction. Comments on Inorganic Chemistry, 1997, 19(5): 307–325

    Article  CAS  Google Scholar 

  32. Song C S. Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 2006, 115(1–4): 2–32

    Article  CAS  Google Scholar 

  33. Kitano M, Matsuoka M, Ueshima M, Anpo M. Recent developments in titanium oxide-based photocatalysts. Applied Catalysis A, General, 2007, 325(1): 1–14

    Article  CAS  Google Scholar 

  34. Indrakanti V P, Kubicki J D, Schobert H H. Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook. Energy & Environmental Science, 2009, 2(7): 745–758

    Article  CAS  Google Scholar 

  35. Inoue T, Fujishima A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 1979, 277(5698): 637–638

    Article  CAS  Google Scholar 

  36. Anpo M, Yamashita H, Ichihashi Y, Fujii Y, Honda M. Photocatalytic reduction of CO2 with H2O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt. Journal of Physical Chemistry B, 1997, 101(14): 2632–2636

    Article  CAS  Google Scholar 

  37. Anpo M, Yamashita H, Ikeue K, Fujii Y, Zhang S G, Ichihashi Y, Park D R, Suzuki Y, Koyano K, Tatsumi T. Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catalysis Today, 1998, 44(1–4): 327–332

    Article  CAS  Google Scholar 

  38. Yamashita H, Honda M, Harada M, Ichihashi Y, Anpo M, Hirao T, Itoh N, Iwamoto N. Preparation of titanium oxide photocatalysts anchored on porous silica glass by a metal ion-implantation method and their photocatalytic reactivities for the degradation of 2-propanol diluted in water. Journal of Physical Chemistry B, 1998, 102(52): 10707–10711

    Article  CAS  Google Scholar 

  39. Ogawa M, Ikeue K, Anpo M. Transparent self-standing films of titanium-containing nanoporous silica. Chemistry of Materials, 2001, 13(9): 2900–2904

    Article  CAS  Google Scholar 

  40. Nguyen T V, Wu J C S. Photoreduction of CO2 to fuels under sunlight using optical-fiber reactor. Solar Energy Materials and Solar Cells, 2008, 92(8): 864–872

    Article  CAS  Google Scholar 

  41. Anpo M, Zhang S G, Mishima H, Matsuoka M, Yamashita H. Design of photocatalysts encapsulated within the zeolite framework and cavities for the decomposition of NO into N2 and O2 at normal temperature. Catalysis Today, 1997, 39(3): 159–168

    Article  CAS  Google Scholar 

  42. Yamashita H, Nishiguchi H, Kamada N, Anpo M, Teraoka Y, Hatano H, Ehara S, Kikui K, Palmisano L, Sclafani A, Schiavello M, Fox M A. Photocatalytic reduction of CO2 with H2O on TiO2 and Cu/TiO2 catalysts. Research on Chemical Intermediates, 1994, 20(8): 815–823

    Article  CAS  Google Scholar 

  43. Ishitani O, Inoue C, Suzuki Y, Ibusuki T. Photocatalytic reduction of carbon dioxide to methane and acetic acid by an aqueous suspension of metal deposited TiO2. Journal of Photochemistry and Photobiology A: Chemistry 1993, 72(3), 269-271

    Google Scholar 

  44. Ikeue K, Nozaki S, Ogawa M, Anpo M. Characterization of selfstanding Ti-containing porous silica thin films and their reactivity for the photocatalytic reduction of CO2 with H2O. Catalysis Today, 2002, 74(3–4): 241–248

    Article  CAS  Google Scholar 

  45. Basak S, Rane K S, Biswas P. Hydrazine-assisted, low-temperature aerosol pyrolysis method to synthesize gamma-Fe2O3. Chemistry of Materials, 2008, 20(15): 4906–4914

    Article  CAS  Google Scholar 

  46. Wang W N, Widiyastuti W, Ogi T, Lenggoro I W, Okuyama K. Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors. Chemistry of Materials, 2007, 19(7): 1723–1730

    Article  CAS  Google Scholar 

  47. Wang WN, Park J, Biswas P. Rapid synthesis of nanostructured Cu-TiO2-SiO2 composites for CO2 photoreduction by evaporation driven self-assembly. Catalysis Science and Technology, 2011, 1(4): 593–600

    Article  CAS  Google Scholar 

  48. Wang W N, Iskandar F, Okuyama K, Shinomiya Y. Rapid synthesis of non-aggregated fine chloroapatite blue phosphor powders with high quantum efficiency. Advanced Materials, 2008, 20(18): 3422–3426

    Article  CAS  Google Scholar 

  49. Wang W N, Kaihatsu Y, Iskandar F, Okuyama K. Highly luminous hollow chloroapatite phosphors formed by a template-free aerosol route for solid-state lighting. Chemistry of Materials, 2009, 21(19): 4685–4691

    Article  CAS  Google Scholar 

  50. Iskandar F, Gradon L, Okuyama K. Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. Journal of Colloid and Interface Science, 2003, 265(2): 296–303

    Article  CAS  Google Scholar 

  51. Sen D, Mazumder S, Melo J S, Khan A, Bhattyacharya S, D’souza S F. Evaporation driven self-assembly of a colloidal dispersion during spray drying: volume fraction dependent morphological transition. Langmuir, 2009, 25(12): 6690–6695

    Article  CAS  Google Scholar 

  52. Chang S T, Velev O D. Evaporation-induced particle microseparations inside droplets floating on a chip. Langmuir, 2006, 22(4): 1459–1468

    Article  CAS  Google Scholar 

  53. Iskandar F, Chang H W, Okuyama K. Preparation of microencapsulated powders by an aerosol spray method and their optical properties. Advanced Powder Technology, 2003, 14(3): 349–367

    Article  CAS  Google Scholar 

  54. Wang W N, Purwanto A, Lenggoro I W, Okuyama K, Chang H, Jang H D. Investigation on the correlations between droplet and particle size distribution in ultrasonic spray pyrolysis. Industrial & Engineering Chemistry Research, 2008, 47(5): 1650–1659

    Article  CAS  Google Scholar 

  55. Kay A, Cesar I, Grätzel M. New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. Journal of the American Chemical Society, 2006, 128(49): 15714–15721

    Article  CAS  Google Scholar 

  56. Barreca D, Fornasiero P, Gasparotto A, Gombac V, Maccato C, Montini T, Tondello E. The potential of supported Cu2O and CuO nanosystems in photocatalytic H2 production. ChemSusChem, 2009, 2(3): 230–233

    Article  CAS  Google Scholar 

  57. Su J, Feng X, Sloppy J D, Guo L, Grimes C A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: synthesis and photoelectrochemical properties. Nano Letters, 2011, 11(1): 203–208

    Article  CAS  Google Scholar 

  58. Su J Z, Guo L J, Yoriya S, Grimes C A. Aqueous growth of pyramidal-shaped BiVO4 nanowire arrays and structural characterization: application to photoelectrochemical water splitting. Crystal Growth & Design, 2010, 10(2): 856–861

    Article  CAS  Google Scholar 

  59. Thimsen E, Biswas S, Lo C S, Biswas P. Predicting the band structure of mixed transition metal oxides: theory and experiment. Journal of Physical Chemistry C, 2009, 113(5): 2014–2021

    Article  Google Scholar 

  60. Wolcott A, Smith W A, Kuykendall T R, Zhao Y P, Zhang J Z. Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting. Advanced Functional Materials, 2009, 19(12): 1849–1856

    Article  CAS  Google Scholar 

  61. Wang H L, Deutsch T, Turner J A. Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. Journal of the Electrochemical Society, 2008, 155(5): F91–F96

    Article  CAS  Google Scholar 

  62. Zhang Z J, Zhao Y, Zhu M M. NiO films consisting of vertically aligned cone-shaped NiO rods. Applied Physics Letters, 2006, 88(3): 033101

    Article  Google Scholar 

  63. Mor G K, Varghese O K, Wilke R H T, Sharma S, Shankar K, Latempa T J, Choi K S, Grimes C A. P-type Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Letters, 2008, 8(7): 1906–1911

    Article  CAS  Google Scholar 

  64. Khaselev O, Turner J A. A monolithic photovoltaicphotoelectrochemical device for hydrogen production via water splitting. Science, 1998, 280(5362): 425–427

    Article  CAS  Google Scholar 

  65. Sivula K, Le Formal F, Gratzel M. WO3-Fe2O3 photoanodes for water splitting: a host scaffold, guest absorber approach. Chemistry of Materials, 2009, 21(13): 2862–2867

    Article  CAS  Google Scholar 

  66. van de Krol R, Liang Y Q, Schoonman J. Solar hydrogen production with nanostructured metal oxides. Journal of Materials Chemistry, 2008, 18(20): 2311–2320

    Article  Google Scholar 

  67. Walter M G, Warren E L, McKone J R, Boettcher S W, Mi Q X, Santori E A, Lewis N S. Solar water splitting cells. Chemical Reviews, 2010, 110(11): 6446–6473

    Article  CAS  Google Scholar 

  68. Grätzel M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic Chemistry, 2005, 44(20): 6841–6851

    Article  Google Scholar 

  69. Yun H J, Lee H, Joo J B, Kim W, Yi J. Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid. Journal of Physical Chemistry C, 2009, 113(8): 3050–3055

    Article  CAS  Google Scholar 

  70. Takahashi M, Tsukigi K, Uchino T, Yoko T. Enhanced photocurrent in thin film TiO2 electrodes prepared by sol-gel method. Thin Solid Films, 2001, 388(1–2): 231–236

    Article  CAS  Google Scholar 

  71. Thimsen E, Rastgar N, Biswas P. Nanostructured TiO2 films with controlled morphology synthesized in a single step process: Performance of dye-sensitized solar cells and photo watersplitting. Journal of Physical Chemistry C, 2008, 112(11): 4134–4140

    Article  CAS  Google Scholar 

  72. Aduda B O, Ravirajan P, Choy K L, Nelson J. Effect of morphology on electron drift mobility in porous TiO2. International Journal of Photoenergy, 2004, 6(3): 141–147

    Article  CAS  Google Scholar 

  73. Choi K S. Shape effect and shape control of polycrystalline semiconductor electrodes for use in photoelectrochemical cells. Journal of Physical Chemistry Letters, 2010, 1(15): 2244–2250

    Article  CAS  Google Scholar 

  74. Kim B, Byun D, Lee J K, Park D, Structural analysis on photocatalytic efficiency of TiO2 by chemical vapor deposition. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers. 2002, 41(1), 222-226

  75. An W J, Thimsen E, Biswas P. Aerosol-chemical vapor deposition method for synthesis of nanostructured metal oxide thin films with controlled morphology. Journal of Physical Chemistry Letters, 2010, 1(1): 249–253

    Article  CAS  Google Scholar 

  76. Liu B, Aydil E S. Growth of oriented single-crystalline rutile TiO(2) nanorods on transparent conducting substrates for dye-sensitized solar cells. Journal of the American Chemical Society, 2009, 131(11): 3985–3990

    Article  CAS  Google Scholar 

  77. Liu S Q, Huang K L. Straightforward fabrication of highly ordered TiO2 nanowire arrays in AAM on aluminum substrate. Solar Energy Materials and Solar Cells, 2005, 85(1): 125–131

    CAS  Google Scholar 

  78. Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A. Enhanced photocleavage of water using titania nanotube arrays. Nano Letters, 2005, 5(1): 191–195

    Article  CAS  Google Scholar 

  79. Wolcott A, Smith W A, Kuykendall T R, Zhao Y P, Zhang J Z. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays. Small, 2009, 5(1): 104–111

    Article  CAS  Google Scholar 

  80. Wu J J, Yu C C. Aligned TiO2 nanorods and nanowalls. Journal of Physical Chemistry B, 2004, 108(11): 3377–3379

    Article  CAS  Google Scholar 

  81. Thimsen E, Biswas P. Nanostructured photoactive films synthesized by a flame aerosol reactor. AIChE Journal. 2007, 53(7): 1727–1735

    Article  CAS  Google Scholar 

  82. Kodas T T, Hampden-Smith M J. Aerosol Processing of Materials. New York: Wiley-VCH, 1999

    Google Scholar 

  83. Biswas P, Wu C Y. Control of toxic metal emissions from combustors using sorbents: a review. Journal of the Air & Waste Management Association, 1995, 48(2): 113–127

    Google Scholar 

  84. Zhan Z L, Wang W N, Zhu L Y, An W J, Biswas P. Flame aerosol reactor synthesis of nanostructured SnO2 thin films High gas-sensing properties by control of morphology. Sensors and Actuators. B, Chemical, 2010, 150(2): 609–615

    Article  Google Scholar 

  85. An W J, Jiang D D, Matthews J R, Borrelli F, Biswas P. Thermal conduction effects impacting morphology during synthesis of columnar nanostructured TiO2 thin films. Journal of Materials Chemistry, 2011, 21(22): 7913–7921

    Article  CAS  Google Scholar 

  86. Kulkarni P, Biswas P. Morphology of nanostructured films for environmental applications: Simulation of simultaneous sintering and growth. Journal of Nanoparticle Research, 2003, 5(3–4): 259–268

    Article  CAS  Google Scholar 

  87. Kulkarni P, Biswas P. A Brownian dynamics simulation to predict morphology of nanoparticle deposits in the presence of interparticle interactions. Aerosol Science and Technology, 2004, 38(6): 541–554

    Article  CAS  Google Scholar 

  88. Gratzel M. Photovoltaic and photoelectrochemical conversion of solar energy. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2007, 365(1853): 993–1005

    Article  CAS  Google Scholar 

  89. Jeong S, Aydil E S. Heteroepitaxial growth of Cu2O thin film on ZnO by metal organic chemical vapor deposition. Journal of Crystal Growth, 2009, 311(17): 4188–4192

    Article  CAS  Google Scholar 

  90. McShane C M, Siripala W P, Choi K S. Effect of junction morphology on the performance of polycrystalline Cu2O homojunction solar cells. Journal of Physical Chemistry Letters, 2010, 1(18): 2666–2670

    Article  CAS  Google Scholar 

  91. Yuhas B D, Yang P D. Nanowire-based all-oxide solar cells. Journal of the American Chemical Society, 2009, 131(10): 3756–3761

    Article  CAS  Google Scholar 

  92. O’regan B, Gratzel M, Low-Cost A. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740

    Article  Google Scholar 

  93. Nozik A J. Quantum dot solar cells. Physica E, Low-Dimensional Systems and Nanostructures, 2002, 14(1–2): 115–120

    Article  CAS  Google Scholar 

  94. Debnath R, Tang J, Barkhouse D A, Wang X H, Pattantyus-Abraham A G, Brzozowski L, Levina L, Sargent E H. Ambientprocessed colloidal quantum dot solar cells via individual preencapsulation of nanoparticles. Journal of the American Chemical Society, 2010, 132(17): 5952–5953

    Article  CAS  Google Scholar 

  95. Pattantyus-Abraham A G, Kramer I J, Barkhouse A R, Wang X H, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin M K, Grätzel M, Sargent E H. Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano, 2010, 4(6): 3374–3380

    Article  CAS  Google Scholar 

  96. Robel I, Kuno M, Kamat P V. Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles. Journal of the American Chemical Society, 2007, 129(14): 4136–4137

    Article  CAS  Google Scholar 

  97. Robel I, Subramanian V, Kuno M, Kamat P V. Quantum dot solar cells. harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. Journal of the American Chemical Society, 2006, 128(7): 2385–2393

    CAS  Google Scholar 

  98. Tang K H, Zhu L Y, Urban V S, Collins A M, Biswas P, Blankenship R E. Temperature and ionic strength effects on the chlorosome light-harvesting antenna complex. Langmuir, 2011, 27(8): 4816–4828

    Article  CAS  Google Scholar 

  99. Modesto-Lopez L B, Thimsen E J, Collins A M, Blankenship R E, Biswas P. Electrospray-assisted characterization and deposition of chlorosomes to fabricate a biomimetic light-harvesting device. Energy & Environmental Science, 2010, 3(2): 216–222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratim Biswas.

Additional information

Dr. Pratim Biswas received his B. Tech. degree from the Indian Institute of Technology, Bombay in Mechanical Engineering in 1980; his M.S. degree from the University of California, Los Angeles in 1981 and his Ph.D degree from the California Institute of Technology in 1985. He joined Washington University in St. Louis in August 2000 as the Inaugural Stifel and Quinette Jens Professor and Director of the Environmental Engineering Science Program. In 2006, he became the Chair of the newly created Department of Energy, Environmental and Chemical Engineering at Washington University in St. Louis. He has won several Teaching and Research Awards: the recipient of the 1991 Kenneth Whitby Award given for outstanding contributions by the American Association for Aerosol Research; and the Neil Wandmacher Teaching Award of the College of Engineering in 1994. He was elected as a Fellow of the Academy of Science, St. Louis in 2003. Dr. Biswas is a member of the Steering Committee of the McDonnell International Scholars Academy, and the Ambassador to the Indian Institute of Technology, Bombay. He has played a leading role at the National and International arena in the field of Aerosol Science and Technology. He served as the President of the American Association for Aerosol Research in 2006–2007. He served on a National Academy of Science Committee to review the Federal Nanotechnology Safety Strategy. He is a Fellow of the American Association for Aerosol Research, and the Saint Louis Science Academy. He is a recipient of the Distinguished Alumni Award from IIT Bombay. He serves on a Government of India Advisor Committee to the Ministry of Environment and Forests. His research and educational interests are in aerosol science and technology, nanoparticle technology, energy and environmental nanotechnology, air quality and pollution control and the thermal sciences. He has published more than 250 refereed journal papers and presented more than 150 invited talks all across the globe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Biswas, P., Wang, WN. & An, WJ. The energy-environment nexus: aerosol science and technology enabling solutions. Front. Environ. Sci. Eng. China 5, 299 (2011). https://doi.org/10.1007/s11783-011-0351-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-011-0351-1

Keywords

  • energy-environment nexus
  • aerosol science and technology
  • fossil fuels
  • carbon dioxide conversion
  • solar energy
  • nanoparticle technology