Skip to main content
Log in

Adsorption of toluene, ethylbenzene and xylene isomers on multi-walled carbon nanotubes oxidized by different concentration of NaOCl

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNTs) were fabricated and oxidized by different concentrations of sodium hypochlorite (NaOCl) solutions. The untreated MWCNTs and modified MWCNTs were employed as adsorbents to study their characterizations and adsorption performance of toluene, ethylbenzene and xylene isomers (TEX) in an aqueous solution. The physicochemical properties of MWCNTs were greatly affected after oxidation, which influences TEX adsorption capacity. The 3% NaOCl-oxidized MWCNTs shows the greatest enhancement in TEX adsorption, followed by the 30% NaOCl. More interestingly, the 15% NaOCl-oxidized MWCNTs has lower adsorption capacities than untreated MWCNTs. The adsorption mechanism of TEX on treated MWCNTs is attributed to the combined action of hydrophobic interaction, π-π bonding interaction between the aromatic ring of TEX and the oxygen-containing functional groups of MWCNTs and electrostatic interaction. 3% NaOCl solution could not only introduce much oxygen-containing functional groups on MWCNTs, but also lead to less damage for the pore structure. This suggests that the CNTs-3% NaOCl is efficient adsorbent for TEX and that they may possess good potential for TEX removal in wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348):56–58

    Article  CAS  Google Scholar 

  2. Britz D A, Khlobystov A N. Noncovalent interactions of molecules with single walled carbon nanotubes. Chemical Society Reviews, 2006, 35(7): 637–659

    Article  CAS  Google Scholar 

  3. Lu C, Su F, Hu S K. Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Applied Surface Science, 2008, 254(21): 7035–7041

    Article  CAS  Google Scholar 

  4. Chen W, Duan L, Zhu D. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes. Environmental Science & Technology, 2007, 41(24): 8295–8300

    Article  CAS  Google Scholar 

  5. Woods L M, Bădescu S C, Reinecke T L. Adsorption of simple benzene derivatives on carbon nanotubes. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(15): 155415

    Article  Google Scholar 

  6. Rochefort A, Wuest J D. Interaction of substituted aromatic compounds with graphene. Langmuir, 2009, 25(1): 210–215

    Article  CAS  Google Scholar 

  7. Hsu S, Lu C. Modification of single-walled carbon nanotubes for enhancing isopropyl alcohol vapor adsorption from air streams. Separation Science and Technology, 2007, 42(12): 2751–2766

    Article  CAS  Google Scholar 

  8. Su F S, Lu C S, Hu S K. Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 353(1): 83–91

    Article  CAS  Google Scholar 

  9. Chin C J M, Shih L C, Tsai H J, Liu T K. Adsorption of o-xylene and p-xylene from water by SWCNTs. Carbon, 2007, 45(6): 1254–1260

    Article  CAS  Google Scholar 

  10. Zhang S, Shao T, Bekaroglu S S K, Karanfil T. The impacts of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compounds. Environmental Science & Technology, 2009, 43(15): 5719–5725

    Article  CAS  Google Scholar 

  11. Gotovac S, Yang CM, Hattori Y, Takahashi K, Kanoh H, Kaneko K. Adsorption of polyaromatic hydrocarbons on single wall carbon nanotubes of different functionalities and diameters. Journal of Colloid and Interface Science, 2007, 314(1): 18–24

    Article  CAS  Google Scholar 

  12. Cho H H, Smith B A, Wnuk J D, Fairbrother D H, Ball W P. Influence of surface oxides on the adsorption of naphthalene onto multiwalled carbon nanotubes. Environmental Science & Technology, 2008, 42(8): 2899–2905

    Article  CAS  Google Scholar 

  13. Chen J, Chen W, Zhu D Q. Adsorption of nonionic aromatic compounds to single-walled carbon nanotubes: effects of aqueous solution chemistry. Environmental Science & Technology, 2008, 42(19): 7225–7230

    Article  CAS  Google Scholar 

  14. Liao Q, Sun J, Gao L. Adsorption of chlorophenols by multi-walled carbon nanotubes treated with HNO3 and NH3. Carbon, 2008, 46(3): 553–555

    Article  CAS  Google Scholar 

  15. Abdelsalam M, Burk R C. Thermodynamics of pentachlorophenol adsorption from aqueous solutions by oxidized multi-walled carbon nanotubes. Applied Surface Science, 2008, 255(5): 1975–1981

    Article  CAS  Google Scholar 

  16. Peng X, Li Y, Luan Z, Di Z, Wang H, Tian B, Jia Z. Adsorption of 1,2-dichlorobenzene from water to carbon nanotubes. Chemical Physics Letters, 2003, 376(1–2): 154–158

    Article  CAS  Google Scholar 

  17. Li X, Chen G. Surface modified graphite nanosheets used as adsorbent to remove 1,2-dichlorobenzene from water. Materials Letters, 2009, 63(11): 930–932

    Article  CAS  Google Scholar 

  18. Shen X E, Shan X Q, Dong D M, Hua X Y, Owens G. Kinetics and thermodynamics of sorption of nitroaromatic compounds to asgrown and oxidized multiwalled carbon nanotubes. Journal of Colloid and Interface Science, 2009, 330(1): 1–8

    Article  CAS  Google Scholar 

  19. Lin D, Xing B. Adsorption of phenolic compounds by carbon nanotubes: role of aromaticity and substitution of hydroxyl groups. Environmental Science & Technology, 2008, 42(19): 7254–7259

    Article  CAS  Google Scholar 

  20. Zhong J, Meng J, Liang X Q, Song L, Zhao T, Xie S S, Ibrahim K, Qian H J, Wang J O, Guo J H, Xu H Y, Wu Z Y. XANES study of phenylalanine and glycine adsorption on single-walled carbon nanotubes. Materials Letters, 2009, 63(3–4): 431–433

    Article  CAS  Google Scholar 

  21. Chen G C, Shan X Q, Zhou Y Q, Shen X E, Huang H L, Khan S U. Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 2009, 169(1–3): 912–918

    Article  CAS  Google Scholar 

  22. Yang K, Xing B. Adsorption of fulvic acid by carbon nanotubes from water. Environ Pollut, 2009, 157(4): 1095–1100

    Article  CAS  Google Scholar 

  23. Wang X, Tao S, Xing B. Sorption and competition of aromatic compounds and humic acid on multiwalled carbon nanotubes. Environmental Science & Technology, 2009, 43(16): 6214–6219

    Article  CAS  Google Scholar 

  24. Su F, Lu C. Adsorption kinetics, thermodynamics and desorption of natural dissolved organic matter by multiwalled carbon nanotubes. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2007, 42(11): 1543–1552

    Article  CAS  Google Scholar 

  25. Kuo C Y, Wu C H, Wu J Y. Adsorption of direct dyes from aqueous solutions by carbon nanotubes: determination of equilibrium, kinetics and thermodynamics parameters. Journal of Colloid and Interface Science, 2008, 327(2): 308–315

    Article  CAS  Google Scholar 

  26. Wu C H. Adsorption of reactive dye onto carbon nanotubes: equilibrium, kinetics and thermodynamics. Journal of Hazardous Materials, 2007, 144(1–2): 93–100

    Article  CAS  Google Scholar 

  27. Eswaramoorthy M, Sen R, Rao C N R. A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors. Chemical Physics Letters, 1999, 304(3–4): 207–210

    Article  CAS  Google Scholar 

  28. Raymundo-Piñero E, Azaïs P, Cacciaguerra T, Cazorla-Amorós D, Linares-Solano A, Béguin F. KOH and NaOH activation mechanisms of multiwalled carbon nanotubes with different structural organization. Carbon, 2005, 43(4): 786–795

    Article  Google Scholar 

  29. Li Y H, Wang S G, Luan Z K, Ding J, Xu C L, Wu D H. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon, 2003, 41(5): 1057–1062

    Article  CAS  Google Scholar 

  30. Raymundo-Piñero E, Cacciaguerra T, Simon P, Béguin F. A single step process for the simultaneous purification and opening of multiwalled carbon nanotubes. Chemical Physics Letters, 2005, 412(1–3): 184–189

    Article  Google Scholar 

  31. Lu C, Su F. Adsorption of natural organic matter by carbon nanotubes. Separation and Purification Technology, 2007, 58(1): 113–121

    Article  CAS  Google Scholar 

  32. Ma J, Wang J N, Wang X X. Large-diameter and water-dispersible single-walled carbon nanotubes synthesis, characterization and applications. Journal of Materials Chemistry, 2009, 19(19): 3033–3041

    Article  CAS  Google Scholar 

  33. Ma J, Wang J N. Purification of single-walled carbon nanotubes by a highly efficient and nondestructive approach. Chemistry of Materials, 2008, 20(9): 2895–2902

    Article  CAS  Google Scholar 

  34. Myers D. Surfaces, Interfaces, and Colloids: Principles and Applications. NewYork: Wiley-VCH, 1999

    Book  Google Scholar 

  35. Gregg S J, Sing K S W. Adsorption, Surface Area, and Porosity. New York: Academic Press, 1982

    Google Scholar 

  36. Almeida C M, Boas L V. Analysis of BTEX and other substituted benzenes in water using headspace SPME-GC-FID: method validation. J of Environ Monit, 2004, 6(1): 80–88

    Article  CAS  Google Scholar 

  37. Zhu Z Z, Wang Z, Li H L. Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation. Applied Surface Science, 2008, 254(10): 2934–2940

    Article  CAS  Google Scholar 

  38. Yu Z H, Brus L E. (n, m) Structural assignments and chirality dependence in single-Wall carbon nanotube raman Scattering. Journal of Physical Chemistry B, 2001, 105(29): 6831–6837

    Article  CAS  Google Scholar 

  39. Souza Filho A G, Jorio A, Samsonidze G G, Dresselhaus G, Pimenta M A, Dresselhaus M S, Swan A K, Ünlü M S, Goldberg B B, Saito R. Competing spring constant versus double resonance effects on the properties of dispersive modes in isolated single-wall nanotubes. Physical Review B, 2003, 67(3): 354271–354277

    Article  Google Scholar 

  40. Grüneis A, Saito R, Kimura T, Cançado L G, Pimenta MA, Jorio A, Souza Filho A G, Dresselhaus G, Dresselhaus M S. Determination of two-dimensional phonon dispersion relation of graphite by Raman spectroscopy. Physical Review B: Condensed Matter and Materials Physics, 2002, 65(15): 155405–155411

    Article  Google Scholar 

  41. Daifullah A A M, Girgis B S. Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 214(1–3): 181–193

    Article  CAS  Google Scholar 

  42. Hoferkamp L A, Weber E J. Nitroaromatic reduction kinetics as a function of dominant terminal electron acceptor processes in natural sediments. Environmental Science & Technology, 2006, 40(7): 2206–2212

    Article  CAS  Google Scholar 

  43. Wang X L, Liu Y, Tao S, Xing B S. Relative importance of multiple mechanisms in sorption of organic compounds by multiwalled carbon nanotubes. Carbon, 2010, 48(13): 3721–3728

    Article  CAS  Google Scholar 

  44. Yang K, Xing B S. Adsorption of organic compounds by carbon nanomaterials in aqueous phase: Polanyi theory and its application. Chemical Reviews, 2010, 110(10): 5989–6008

    Article  CAS  Google Scholar 

  45. Pan B, Xing B S. Adsorption mechanisms of organic chemicals on carbon nanotubes. Environmental Science & Technology, 2008, 42(24): 9005–9013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, F., Ma, J. & Wu, Y. Adsorption of toluene, ethylbenzene and xylene isomers on multi-walled carbon nanotubes oxidized by different concentration of NaOCl. Front. Environ. Sci. Eng. 6, 320–329 (2012). https://doi.org/10.1007/s11783-011-0340-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-011-0340-4

Keywords

Navigation