Skip to main content
Log in

Gold modified microelectrode for direct tetracycline detection

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The residues of tetracycline antibiotics in water have attracted many concerns due to their harmful impact to human health. This paper reports an electrochemical sensor for the determination of tetracycline (TC) by the microelectrode, which was fabricated by electrodeposited gold colloids on tungsten tip. Cyclic voltammerty was used to study the electrochemical behavior of TC on the microelectrode. Well anodic wave was obtained at about 1.5 V in acidic solutions. Electrochemical determination of tetracycline was investigated using microelectrode by cyclic voltammetry. Under optimized conditions, the calibration curves for TC were obtained. The oxidation peak currents were linearly related to TC concentrations in the range of 1–10 mg·L−1 and 10–100 mg·L−1, respectively. The detection limit was 0.09 mg·L−1 (S/N = 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wittstock G, Gründig B, Strehlitz B, Zimmer K. Evaluation of microelectrode arrays for amperometric detection by scanning electrochemical microscopy. Electroanalysis, 1998, 10(8): 526–531

    Article  CAS  Google Scholar 

  2. Dong H, Wang S H, Liu A H, Galligan J J, Swain G M. Drug effects on the electrochemical detection of norepinephrine with carbon fiber and diamond microelectrodes. Journal of Electroanalytical Chemistry, 2009, 632(1–2): 20–29

    Article  CAS  Google Scholar 

  3. Wang R H, Dong W, Ruan C, Kanayeva D, Tian R, Lassiter K, Li Y. TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes. Nano Letters, 2008, 8(9): 2625–2631

    Article  CAS  Google Scholar 

  4. Liu S Y, Liu G, Tian Y C, Chen Y P, Yu H Q, Fang F. An innovative microelectrode fabricated using photolithography for measuring dissolved oxygen distributions in aerobic granules. Environmental Science & Technology, 2007, 41(15): 5447–5452

    Article  CAS  Google Scholar 

  5. Lee M T B, Seliskar C J, Heineman W R, McGoron A J. Microelectrode sensors for in vivo detection of radiopharmaceuticals. Journal of the American Chemical Society, 1997, 119(27): 6434–6435

    Article  CAS  Google Scholar 

  6. Lin Z, Takahashi Y, Kitagawa Y, Umemura T, Shiku H, Matsue T. An addressable microelectrode array for electrochemical detection. Analytical Chemistry, 2008, 80(17): 6830–6833

    Article  CAS  Google Scholar 

  7. Suzuki A, Ivandini T A, Yoshimi K, Fujishima A, Oyama G, Nakazato T, Hattori N, Kitazawa S, Einaga Y. Fabrication, characterization, and application of boron-doped diamond microelectrodes for in vivo dopamine detection. Analytical Chemistry, 2007, 79(22): 8608–8615

    Article  CAS  Google Scholar 

  8. Orozco J, Jiménez-Jorquera C, Fernández-Sánchez C. Gold nanoparticle-modified ultramicroelectrode arrays for biosensing: a comparative assessment. Bioelectrochemistry (Amsterdam, Netherlands), 2009, 75(2): 176–181

    Article  CAS  Google Scholar 

  9. Woo D H, Kang H, Park S M. Fabrication of nanoscale gold disk electrodes using ultrashort pulse etching. Analytical Chemistry, 2003, 75(23): 6732–6736

    Article  CAS  Google Scholar 

  10. Matos R C, Augelli M A, Lago C L, Angnes L. Flow injection analysis-amperometric determination of ascorbic and uric acids in urine using arrays of gold microelectrodes modified by electrodeposition of palladium. Analytica Chimica Acta, 2000, 404(1): 151–157

    Article  CAS  Google Scholar 

  11. Hernández-Santos D, Gonzalez-Garcia M B, Garcia A C. Metalnanoparticles based electroanalysis. Electroanalysis, 2002, 14(18): 1225–1235

    Article  Google Scholar 

  12. Katz E, Willner I, Wang J. Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis, 2004, 16(12): 19–44

    Article  CAS  Google Scholar 

  13. Zhang G X, Liu X T, Sun K, Zhao Y, Lin C Y. Sorption of tetracycline to sediments and soils: assessing the roles of pH, the presence of cadmium and properties of sediments and soils. Frontiers of Environmental Science & Engineering in China, 2010, 4(4): 421–429

    Article  CAS  Google Scholar 

  14. Baguer A J, Jensen J, Krogh P H. Effects of the antibiotics oxytetracycline and tylosin on soil fauna. Chemosphere, 2000, 40(7): 751–757

    Article  CAS  Google Scholar 

  15. Richardson B J, Lam P K, Martin M. Emerging chemicals of concern: pharmaceuticals and personal care products (PPCPs) in Asia, with particular reference to Southern China. Marine Pollution Bulletin, 2005, 50(9): 913–920

    Article  CAS  Google Scholar 

  16. Pellinen T, Bylund G, Virta M, Niemi A, Karp M. Detection of traces of tetracyclines from fish with a bioluminescent sensor strain incorporating bacterial luciferase reporter genes. Journal of Agricultural and Food Chemistry, 2002, 50(17): 4812–4815

    Article  CAS  Google Scholar 

  17. Oka H, Ito Y, Matsumoto H. Chromatographic analysis of tetracycline antibiotics in foods. Journal of Chromatography. A, 2000, 882(1–2): 109–133

    Article  CAS  Google Scholar 

  18. Masawat P, Slater J M. The determination of tetracycline residues in food using a disposable screen-printed gold electrode (SPGE). Sensors and Actuators. B, Chemical, 2007, 124(1): 127–132

    Article  Google Scholar 

  19. Loetanantawong B, Suracheep C, Somasundrum M, Surareungchai W. Electrocatalytic tetracycline oxidation at a mixed-valent ruthenium oxide-ruthenium cyanide-modified glassy carbon electrode and determination of tetracyclines by liquid chromatography with electrochemical detection. Analytical Chemistry, 2004, 76(8): 2266–2272

    Article  CAS  Google Scholar 

  20. Casella I G, Picerno F. Determination of tetracycline residues by liquid chromatography coupled with electrochemical detection and solid phase extraction. Journal of Agricultural and Food Chemistry, 2009, 57(19): 8735–8741

    Article  CAS  Google Scholar 

  21. Boo H, Jeong R A, Park S, Kim K S, An K H, Lee Y H, Han J H, Kim H C, Chung T D. Electrochemical nanoneedle biosensor based on multiwall carbon nanotube. Analytical Chemistry, 2006, 78(2): 617–620

    Article  CAS  Google Scholar 

  22. Xiong H, Kim J Y, Kim E K, Amemiya S. Scanning electrochemical microscopy of one-dimensional nanostructure: effects of nanostructure dimensions on the tip feedback current under unbiased conditions. Journal of Electroanalytical Chemistry, 2009, 629(1–2): 78–86

    Article  CAS  Google Scholar 

  23. Küpper M, Schultze J W. SLCP-The scanning diffusion limited current probe: a new method for spatially resolved analysis. Electrochimica Acta, 1997, 42(20–22): 3085–3094

    Article  Google Scholar 

  24. Shulga O, Kirchhoff J R. An acetylcholinesterase enzyme electrode stabilized by an electrodeposited gold nanoparticle layer. Electrochemistry Communications, 2007, 9(5): 935–940

    Article  CAS  Google Scholar 

  25. Ding X J, Mou S F. Ion chromatographic analysis of tetracyclines using polymeric column and acidic eluent. Journal of Chromatography. A, 2000, 897(1–2): 205–214

    Article  CAS  Google Scholar 

  26. Wangfuengkanagul N, Siangproh W, Chailapakul O. A flow injection method for the analysis of tetracycline antibiotics in pharmaceutical formulations using electrochemical detection at anodized boron-doped diamond thin film electrode. Talanta, 2004, 64(5): 1183–1188

    Article  CAS  Google Scholar 

  27. Vega D, Agüí L, González-Cortés A, Yáñez-Sedeño P, Pingarrón J M. Voltammetry and amperometric detection of tetracyclines at multi-wall carbon nanotube modified electrodes. Analytical and Bioanalytical Chemistry, 2007, 389(3): 951–958

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xie Quan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Zhao, H. & Quan, X. Gold modified microelectrode for direct tetracycline detection. Front. Environ. Sci. Eng. 6, 313–319 (2012). https://doi.org/10.1007/s11783-011-0323-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-011-0323-5

Keywords

Navigation