Skip to main content
Log in

Solar photocatalytic decomposition of two azo dyes on multi-walled carbon nanotubes (MWCNTs)/TiO2 composites

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

Multi-walled carbon nanotubes (MWCNTs)/TiO2 composite photocatalysts with high photoactivity were prepared by sol-gel process and further characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), and UV-vis absorption spectra. Compared to pure TiO2, the combination of MWCNTs with titania could cause a significant absorption shift toward the visible region. The photocatalytic performances of the MWCNTs/TiO2 composite catalysts were evaluated for the decomposition of Reactive light yellow K-6G (K-6G) and Mordant black 7 (MB 7) azo dyes solution under solar light irradiation. The results showed that the addition of MWCNTs enhanced the adsorption and photocatalytic activity of TiO2 for the degradation of azo dyes K-6G and MB 7. The effect of MWCNTs content, catalyst dosage, pH, and initial dye concentration were examined as operational parameters. The kinetics of photocatalytic degradation of two dyes was found to follow a pseudo-first-order rate law. The photocatalyst was used for seven cycles with photocatalytic degradation efficiency still higher than 98%. A plausible mechanism is also proposed and discussed on the basis of experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2000, 1(1): 1–21

    Article  CAS  Google Scholar 

  2. Wang Z Y, Huang B B, Dai Y, Qin X Y, Zhang X Y, Wang P, Liu H X, Yu J X. Highly photocatalytic ZnO/In2O3 heteronanostructures synthesized by a coprecipitation method. Journal of Physical Chemistry C, 2009, 113(11): 4612–4617

    Article  CAS  Google Scholar 

  3. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271

    Article  CAS  Google Scholar 

  4. Zhao W, Ma W H, Chen C C, Zhao J C, Shuai Z G. Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−xBx under visible irradiation. Journal of the American Chemical Society, 2004, 126(15): 4782–4783

    Article  CAS  Google Scholar 

  5. Umebayashi T, Yamaki T, Tanaka S, Asai K. Visible light-induced degradation of methylene blue on S-doped TiO2. Chemistry Letters, 2003, 32(4): 330–331

    Article  CAS  Google Scholar 

  6. Zhou M H, Yu J G. Preparation and enhanced daylight-induced photocatalytic activity of C,N,S-tridoped titanium dioxide powders. Journal of Hazardous Materials, 2008, 152(3): 1229–1236

    Article  CAS  Google Scholar 

  7. Yu J C, Yu J, Ho W, Jiang Z, Zhang L. Effects of F - doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 Powders. Chemistry of Materials, 2002, 14(9): 3808–3816

    Article  CAS  Google Scholar 

  8. Wei F Y, Ni L S, Cui P. Preparation and characterization of N-S-codoped TiO2 photocatalyst and its photocatalytic activity. Journal of Hazardous Materials, 2008, 156(1–3): 135–140

    Article  CAS  Google Scholar 

  9. Irie H, Watanabe Y, Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chemistry Letters, 2003, 32(8): 772–773

    Article  CAS  Google Scholar 

  10. Xu C, Killmeyer R, Gray ML, Khan S U M. Photocatalytic effect of carbon-modified n-TiO2 nanoparticles under visible light illumination. Applied Catalysis B: Environmental, 2006, 64(3–4): 312–317

    Article  CAS  Google Scholar 

  11. Colón G, Hidalgo M C, Macías M, Navío J A, Doña J M. Influence of residual carbon on the photocatalytic activity of TiO2/C samples for phenol oxidation. Applied Catalysis B: Environmental, 2003, 43(2): 163–173

    Article  Google Scholar 

  12. Schadler L S, Giannaris S C, Ajayan P M. Load transfer in carbon nanotube epoxy composites. Applied Physics Letters, 1998, 73(26): 3842–3844

    Article  CAS  Google Scholar 

  13. Wang H, Wang H L, Jiang W F, Li Z Q. Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation. Water Research, 2009, 43(1): 204–210

    Article  CAS  Google Scholar 

  14. Maira A J, Coronado J M, Augugliaro V, Yeung K L, Conesa J C, Soria J. Fourier transform infrared study of the performance of nanostructured TiO2 particles for the photocatalytic oxidation of gaseous toluene. Journal of Catalysis, 2001, 202(2): 413–420

    Article  CAS  Google Scholar 

  15. Wawrzyniak B, Morawski A W. Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO2 photocatalyst containing nitrogen. Applied Catalysis B: Environmental, 2006, 62(1–2): 150–158

    Article  CAS  Google Scholar 

  16. Wang W, Serp P, Kalck P, Faria J L. Visible light photodegradation of phenol on MWNT-TiO2 composite catalysts prepared by a modified sol-gel method. Journal of Molecular Catalysis A Chemical, 2005, 235(1–2): 194–199

    Article  CAS  Google Scholar 

  17. Ökte A N, Ylmaz Ö. Photodecolorization of methyl orange by yttrium incorporated TiO2 supported ZSM-5. Applied Catalysis B: Environmental, 2008, 85(1–2): 92–102

    Google Scholar 

  18. Shankar M V, Anandan S, Venkatachalam N, Arabindoo B, Murugesan V. Novel thin-film reactor for photocatalytic degradation of pesticides in an aqueous solutions. Journal of Chemical Technology and Biotechnology, 2004, 79(11): 1279–1285

    Article  CAS  Google Scholar 

  19. Sohrabi MR, Ghavami M. Photocatalytic degradation of Direct Red 23 dye using UV/TiO2: Effect of operational parameters. Journal of Hazardous Materials, 2008, 153(3): 1235–1239

    Article  CAS  Google Scholar 

  20. Chang C N, Ma Y S, Fang G C, Chao A C, Tsai M C, Sung H F. Decolorizing of lignin wastewater using the photochemical UV/TiO2 process. Chemosphere, 2004, 56(10): 1011–1017

    Article  CAS  Google Scholar 

  21. Toor A P, Verma A, Jotshi C K, Bajpai P K, Singh V. Photocatalytic degradation of Direct Yellow 12 dye using UV/TiO2 in a shallow pond slurry reactor. Dyes and Pigments, 2006, 68(1): 53–60

    Article  CAS  Google Scholar 

  22. Li G, Zhao X S, Ray M B. Advanced oxidation of orange II using TiO2 supported on porous adsorbents: The role of pH, H2O2 and O3. Separation and Purification Technology, 2007, 55(1): 91–97

    Article  CAS  Google Scholar 

  23. Yu J G, Yu H G, Cheng B, Zhao X J, Yu J C, Ho W K. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. Journal of Physical Chemistry B, 2003, 107(50): 13871–13879

    Article  CAS  Google Scholar 

  24. Byrappa K, Dayananda A S, Sajan C P, Basavalingu B, Shayan M B, Soga K, Yoshimura M. Hydrothermal preparation of ZnO:CNT and TiO2:CNT composites and their photocatalytic applications. Journal of Materials Science, 2008, 43(7): 2348–2355

    Article  CAS  Google Scholar 

  25. Thompson T L, Yates J T Jr. Surface science studies of the photoactivation of TiO2-new photochemical processes. Chemical Reviews, 2006, 106(10): 4428–4453

    Article  CAS  Google Scholar 

  26. Konstantinou K I, Albanis T A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Applied Catalysis B: Environmental, 2004, 49(1): 1–14

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenfeng Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Liu, S., Wang, H. et al. Solar photocatalytic decomposition of two azo dyes on multi-walled carbon nanotubes (MWCNTs)/TiO2 composites. Front. Environ. Sci. Eng. China 4, 311–320 (2010). https://doi.org/10.1007/s11783-010-0237-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-010-0237-7

Keywords

Navigation