Ultrasound-assisted emulsification solidified floating organic drop microextraction for the determination of trace amounts of copper in water samples

  • Qingyun Chang
  • Jingwen Zhang
  • Xin Du
  • Jingjun Ma
  • Jingci Li
Research Article

Abstract

A simple and efficient liquid-phase microextraction (LPME) technique was developed using ultrasound-assisted emulsification solidified floating organic drop microextraction (USAE-SFODME) combined with flame atomic absorption spectrometry, for the extraction and determination of trace copper in water samples. 1-(2-Pyridylazo)-2-naphthol (PAN) was used as chelating agent. Microextraction efficiency factors (including extraction solvent type, extraction volume, time, temperature, and pH), the amount of the chelating agent, and salt effect were investigated and optimized. Under the optimum extraction conditions, figures of merit of the proposed method were evaluated. The calibration graph was linear in the range of 20–600 μg·L−1 with a detection limit of 0.76 μg·L−1. The relative standard deviation (R.S.D) for ten replicate measurements of 20 and 400 μg·L−1 of copper was 3.83% and 2.65%, respectively. Finally, the proposed method was applied to tap water, river water, and sea water, and accuracy was assessed through the analysis of certified reference water or recovery experiments.

Keywords

ultrasound-assisted emulsification solidified floating organic drop microextraction flame atomic absorption spectrometry preconcentration copper 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shams E, Babaei A, Soltaninezhad M. Simultaneous determination of copper, zinc and lead by adsorptive stripping voltammetry in the presence of morin. Analytica Chimica Acta, 2004, 501(1): 119–124CrossRefGoogle Scholar
  2. 2.
    Kendüzler E, Türker A R. Atomic absorption spectrophotometric determination of trace copper inwaters, aluminium foil and tea samples after preconcentration with 1-nitroso-2-naphthol-3,6-disulfonic acid on Ambersorb 572. Analytica Chimica Acta, 2003, 480(2): 259–266CrossRefGoogle Scholar
  3. 3.
    Gao H W, Lu X Q, Ren J R. Cu(II)-3-(5-chlor-2-hydroxy-3-sulfophenylazo)-6-(2,4,6-tribromophenylazo)-4,5-dihydroxynaphthalene-2,7-disulfonic Acid-Co(II) binuclear complexation and its application to the selective determination of cobalt at ng/ml level. Analytical Sciences, 2005, 21(9): 1043–1049CrossRefGoogle Scholar
  4. 4.
    Gao H W, Chen F F, Chen L, Zeng T, Pan L T, Li J H, Luo H F. A novel detection approach based on chromophore-decolorizing with free radical and application to photometric determination of copper with acid chrome dark blue. Analytica Chimica Acta, 2007, 587(1): 52–59CrossRefGoogle Scholar
  5. 5.
    Kagawa T, Ohno M, Seki T, Chikama K. Online determination of copper in aluminum alloy by microchip solvent extraction using isotope dilution ICP-MS method. Talanta, 2009, 79(4): 1001–1005CrossRefGoogle Scholar
  6. 6.
    Demir Mulazimoglu A, Mulazimoglu I E, Ozkan E. Preconcentration with 1-nitroso-2-naphthol complexes on dowex MWC-1 resin: determination of Cu and Zn at trace level in drinking water samples by ICP-AES. E-Journal of Chemistry, 2009, 6(4): 1176–1180Google Scholar
  7. 7.
    Sreenivasa Rao K, Balaji T, Prasada Rao T, Babu Y, Naidu G R K. Determination of iron, cobalt, nickel, manganese, zinc, copper, cadmium and lead in human hair by inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57(8): 1333–1338CrossRefGoogle Scholar
  8. 8.
    dos Santos W N L, da Silva E G P, Fernandes M S, Araujo R G O, Costa A C S, Vale M G R, Ferreira S L C. Determination of copper in powdered chocolate samples by slurry-sampling flame atomicabsorption spectrometry. Analytical and Bioanalytical Chemistry, 2005, 382(4): 1099–1102CrossRefGoogle Scholar
  9. 9.
    Soylak M, Ercan O. Selective separation and preconcentration of copper (II) in environmental samples by the solid phase extraction on multi-walled carbon nanotubes. Journal of Hazardous Materials, 2009, 168(2–3): 1527–1531CrossRefGoogle Scholar
  10. 10.
    Turker A R. New corbents for solid-phase extraction for metal enrichment. CLEAN-soil, air, water, 2007, 35: 548–557CrossRefGoogle Scholar
  11. 11.
    Alonso A, Almendral MJ, Curto Y, Porras MJ. Spectrophotometric determination of copper in waste water using liquid-liquid extraction in a flow-injection system. Microchimica Acta, 2003, 143(4): 217–220CrossRefGoogle Scholar
  12. 12.
    Tuzen M, Melek E, Soylak M. Celtek clay as sorbent for separationpreconcentration of metal ions from environmental samples. Journal of Hazardous Materials, 2006, 136(3): 597–603CrossRefGoogle Scholar
  13. 13.
    Karimi H, Ghaedi M, Shokrollahi A, Rajabi H R, Soylak M, Karami B. Development of a selective and sensitive flotation method for determination of trace amounts of cobalt, nickel, copper and iron in environmental samples. Journal of Hazardous Materials, 2008, 151(1): 26–32CrossRefGoogle Scholar
  14. 14.
    Bidabadi M S, Dadfarnia S, Shabani A M. Solidified floating organic drop microextraction (SFODME) for simultaneous separation/preconcentration and determination of cobalt and nickel by graphite furnace atomic absorption spectrometry (GFAAS). Journal of Hazardous Materials, 2009, 166(1): 291–296CrossRefGoogle Scholar
  15. 15.
    Carasek E, Wick Tonjes J, Scharf M. A new method of microvolume back-extraction procedure for enrichment of Pb and Cd and determination by flame atomic absorption spectrometry. Talanta, 2002, 56(1): 185–191CrossRefGoogle Scholar
  16. 16.
    Lemos V A, Santos J S, Baliza P X. Me-BTABr reagent in cloud point extraction for spectrometric determination of copper in water samples. Journal of the Brazilian Chemical Society, 2006, 17(1): 30–35CrossRefGoogle Scholar
  17. 17.
    Lemos V A, Santos MS, dos Santos M J S, Vieira D R, Novaes C G. Determination of copper in water samples by atomic absorption spectrometry after cloud point extraction. Microchimica Acta, 2007, 157(3–4): 215–222CrossRefGoogle Scholar
  18. 18.
    Fragueiro S, Lavilla I, Bendicho C. Hydride generation-headspace single-drop microextraction-electrothermal atomic absorption spectrometry method for determination of selenium in waters after photoassisted prereduction. Talanta, 2006, 68(4): 1096–1101CrossRefGoogle Scholar
  19. 19.
    Penapereira F, Lavilla I, Bendicho C. Miniaturized preconcentration methods based on liquid-liquid extraction and their application in inorganic ultratrace analysis and speciation: A review. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(1): 1–15CrossRefGoogle Scholar
  20. 20.
    Farajzadeh M A, Bahram M, Zorita S, Mehr B G. Optimization and application of homogeneous liquid-liquid extraction in preconcentration of copper (II) in a ternary solvent system. Journal of Hazardous Materials, 2009, 161(2–3): 1535–1543CrossRefGoogle Scholar
  21. 21.
    Dietz C, Sanz Landaluze J, Ximénez-Embún P, Madrid-Albarrán Y, Cámara C. Volatile organo-selenium speciation in biological matter by solid phase microextraction-moderate temperature multicapillary gas chromatography with microwave induced plasma atomic emission spectrometry detection. Analytica Chimica Acta, 2004, 501(2): 157–167CrossRefGoogle Scholar
  22. 22.
    Mester Z, Sturgeon R. Trace element speciation using solid phase microextraction. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(9–10): 1243–1269CrossRefGoogle Scholar
  23. 23.
    Carletto J S, Luciano R M, Bedendo G C, Carasek E. Simple hollow fiber renewal liquid membrane extraction method for pre-concentration of Cd(II) in environmental samples and detection by flame atomic absorption spectrometry. Analytica Chimica Acta, 2009, 638(1): 45–50CrossRefGoogle Scholar
  24. 24.
    Xia L,Wu Y, Hu B. Hollow-fiber liquid-phase microextraction prior to low-temperature electrothermal vaporization ICP-MS for trace element analysis in environmental and biological samples. Journal of Mass Spectrometry, 2007, 42(6): 803–810CrossRefGoogle Scholar
  25. 25.
    Liang P, Sang H B. Determination of trace lead in biological and water samples with dispersive liquid-liquid microextraction preconcentration. Analytical Biochemistry, 2008, 380(1): 21–25CrossRefGoogle Scholar
  26. 26.
    Farajzadeh M A, Bahram M, Mehr B G, Jönsson J A. Optimization of dispersive liquid-liquid microextraction of copper (II) by atomic absorption spectrometry as its oxinate chelate: application to determination of copper in different water samples. Talanta, 2008, 75(3): 832–840CrossRefGoogle Scholar
  27. 27.
    Khalili Zanjani M R, Yamini Y, Shariati S, Jönsson J A. A new liquid-phase microextraction method based on solidification of floating organic drop. Analytica Chimica Acta, 2007, 585(2): 286–293CrossRefGoogle Scholar
  28. 28.
    Farahani H, Yamini Y, Shariati S, Khalili-Zanjani M R, Mansour-Baghahi S. Development of liquid phase microextraction method based on solidification of floated organic drop for extraction and preconcentration of organochlorine pesticides in water samples. Analytica Chimica Acta, 2008, 626(2): 166–173CrossRefGoogle Scholar
  29. 29.
    Dadfarnia S, Salmanzadeh A M, Shabani A M H. A novel separation/preconcentration system based on solidification of floating organic drop microextraction for determination of lead by graphite furnace atomic absorption spectrometry. Analytica Chimica Acta, 2008, 623(2): 163–167CrossRefGoogle Scholar
  30. 30.
    Dadfarnia S, Haji Shabani A M, Kamranzadeh E. Separation/preconcentration and determination of cadmium ions by solidification of floating organic drop microextraction and FI-AAS. Talanta, 2009, 79(4): 1061–1065CrossRefGoogle Scholar
  31. 31.
    Xu H, Ding Z, Lv L, Song D, Feng Y Q. A novel dispersive liquid-liquid microextraction based on solidification of floating organic droplet method for determination of polycyclic aromatic hydrocarbons in aqueous samples. Analytica Chimica Acta, 2009, 636(1): 28–33CrossRefGoogle Scholar
  32. 32.
    Priego Capote F, Luque de Castro M D. Ultrasound in analytical chemistry. Analytical and Bioanalytical Chemistry, 2007, 387(1): 249–257CrossRefGoogle Scholar
  33. 33.
    Luque de Castro M D, Priego-Capote F. Ultrasound assistance to liquid-liquid extraction: a debatable analytical tool. Analytica Chimica Acta, 2007, 583(1): 2–9CrossRefGoogle Scholar
  34. 34.
    Regueiro J, Llompart M, Garcia-Jares C, Garcia-Monteagudo J C, Cela R. Ultrasound-assisted emulsification-microextraction of emergent contaminants and pesticides in environmental waters. Journal of Chromatography. A, 2008, 1190(1–2): 27–38CrossRefGoogle Scholar
  35. 35.
    Zhu X S, Zhu X H, Wang B S. Determination of trace cadmium in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction. Microchimica Acta, 2006, 154(1–2): 95–100CrossRefGoogle Scholar
  36. 36.
    Narin I, Soylak M. The uses of 1-(2-pyridylazo)—2-naphtol (PAN) impregnated Ambersorb 563 resin on the solid phase extraction of traces heavy metal ions and their determinations by atomic absorption spectrometry. Talanta, 2003, 60(1): 215–221CrossRefGoogle Scholar
  37. 37.
    Shokoufi N, Shemirani F, Assadi Y. Fiber optic-linear array detection spectrophotometry in combination with dispersive liquid-liquid microextraction for simultaneous preconcentration and determination of palladium and cobalt. Analytica Chimica Acta, 2007, 597(2): 349–356CrossRefGoogle Scholar
  38. 38.
    Afkhami A, Madrakian T, Siampour H. Flame atomic absorption spectrometric determination of trace quantities of cadmium in water samples after cloud point extraction in Triton X-114 without added chelating agents. Journal of Hazardous Materials, 2006, 138(2): 269–272CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Qingyun Chang
    • 1
  • Jingwen Zhang
    • 1
  • Xin Du
    • 1
  • Jingjun Ma
    • 1
  • Jingci Li
    • 1
  1. 1.Hebei Key Laboratory of Bioinorganic Chemistry, College of ScienceAgricultural University of HebeiBaodingChina

Personalised recommendations