Skip to main content
Log in

Challenges of a feasible route towards sustainability in environmental protection

  • Feature Article
  • Published:
Frontiers of Environmental Science & Engineering in China Aims and scope Submit manuscript

Abstract

Anaerobic processes for treatment of low and high strength wastewaters and solid wastes constitute the core method in the natural biological mineralization (NBM) treatment concept. When adequately combined with the complementary NBM-systems and modern clean water saving practices in wastewater collection and transport, they represent a feasible route to sustainable environmental protection (EPsus), in essence even towards a more sustainable society. Despite the development and implementation of modern high rate Anaerobic Wastewater Treatment (AnWT-) systems and complementary innovative NBM-processes, the considerable progress made since the seventies in fundamental insights in microbiology, biochemistry and process technology, still numerous challenging improvements in the NBM-field can be realized. This contribution is mainly based on the insights attained from wide ranging literature evaluations and the results of experimental research conducted by numerous PhD students who participated in our group over the last four decades. An attempt is made here to identify major facets on which an improved insight can, and consequently should, be obtained in order to accomplish more optimal operation and design of various types of Anaerobic Degradation (AnDeg-) processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brundtland Commision. Our common future-The world commission on environment and development. WCED, Oxford University Press, 1987

  2. Lettinga G. A good Life environment for all. Environmental Science Engineering, 2004, 1: 77–82

    Google Scholar 

  3. McCarty P L. Anaerobic Waste Treatment fundamentals. Public Works, 1964, September: 107–112, October: 123–126, November: 91–94, December: 95–99

  4. Wang K, Zeeman G, Lettinga G. Alteration in sewage characteristics upon aging. Water Science and Technology, 1995, 31: 191–200

    Google Scholar 

  5. McCarty P L. The development of anaerobic treatment and its future. Water Science & Technology, 2001, 44(8): 157–176

    Google Scholar 

  6. Lettinga G, van Velsen A F M, Hobma S W, de Zeeuw W J, Klapwijk A. Use of the Upflow Sludge Blanket (USB) reactor. Biotechnology Bioengineering, 1980, 22: 699–734

    Article  CAS  Google Scholar 

  7. Lettinga G. Anaerobic digestion and wastewater treatment systems. A Leeuwenhoek, 1995, 67, 328

    Google Scholar 

  8. McHugh S, O’Reilly C, Mahony T, Colleran E, O’Flaverty V. Anerobic granular sludge bioreactor technology. Reviews in Environmental Science and Bio/Technology, 2003, 2: 225–245

    Article  CAS  Google Scholar 

  9. Jewell W J, Switzenbaum M S, Morris J W. Municipal wastewater treatment with the Anaerobic attached microbial fllm expanded bed process. Journal WPCF, 1981, 53(4), 482–490

    Google Scholar 

  10. Barber W P, Stuckey D C. The use of the anaerobic baffled reactor (ABR) for wastewater treatment Review. Water Research, 1999, 33(7): 1559–1578

    Article  CAS  Google Scholar 

  11. Rittmann B, MacCarty P L. Environmental Biotechnology: Priciples and Applications, MacGraw-Hill, 2001

  12. Rinzema A, A Alphenaar, G Lettinga. Anaerobic digestion of long chain fatty acids in UASB-reactors and Expanded Granular Sludge Bed reactors. Process Biochemistry, 1993, 28: 527–537

    Article  CAS  Google Scholar 

  13. Rinzema A, van Veen H, Lettinga G. Anaerobic digestion of triglyceride emulsions in expanded granular sludge bed reactors with modifled sludge separators. Environmental Technology, 1993, 14: 423–432

    Article  CAS  Google Scholar 

  14. Rinzema A, Boone M, van Knippenberg K, Lettinga G. Bactericidal effect on long chain fatty acids in anaerobic digestion. Water Environmental Research, 1994, 66(1): 40–49

    CAS  Google Scholar 

  15. Hwu C S, Molenaar G, Garthoff J, van Lier J B, Lettinga G. Thermophilic high-rate anaerobic treatment of wastewater containing long-chain fatty acids: impact of reactor hydrodynamics. Biotechnology Letters, 1997, 19: 447–451

    Article  CAS  Google Scholar 

  16. Hwu C S, van Beek B, van Lier J B, Lettinga G. Thermophilic high-rate anaerobic treatment of wastewater containing long-chain fatty acids: Effect of washed out biomass recirculation. Biotechnology Letters, 1997, 19: 453–456

    Article  CAS  Google Scholar 

  17. Hwu C S, van Lier J B, Lettinga G. Physicochemical and biological performance of expanded granular sludge bed reactors treating long-chain fatty acids. Process Biochemistry, 1998, 33: 75–81

    Article  CAS  Google Scholar 

  18. Gonzalez Gil G, Kleerebezem R, van Aelst A, Zoutberg G, Versprille A I, Lettinga G. Toxicity effects of formaldehyde on methanol degrading sludge and its anaerobic conversion in Biobed Expanded Granular Sludge Bbed (EGSB) reactors. Water Science & Technology, 1990, 40: 195–202

    Article  Google Scholar 

  19. Gonzalez-Gil, G, Kleerebezem R, Lettinga G. Formaldehyde toxicity in anaerobic systems. Water Science and Technology, 2000, 42(5–6): 223–229

    CAS  Google Scholar 

  20. Kortekaas S, Wijngaarde R, Klomp J W, Lettinga G, Field J A. Anaerobic treatment of hemp thermomechanical pulping wastewater. Water Research, 1998, 32: 3362–3370

    Article  CAS  Google Scholar 

  21. Kato M T, Field J A, Versteeg P, Lettinga G. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters. Biotechnology Bioengineering, 1994, 44, 469–479

    Article  CAS  Google Scholar 

  22. Kato M T, Field J A, Kleerebezem R, Lettinga G. Treatment of low strength wastewater in upflow anaerobic sludge blanket (UASB) reactors. Journal of Fermentation and Bioengineering, 1994, 77: 679–685

    Article  CAS  Google Scholar 

  23. Rebac S, van Lier J B, Lens P, van Capellen J, Vermeulen M, Stams A J M, Dekkers F, Swinkels K Th M, Lettinga G. Psychrophilic high-rate anaerobic treatment of malting wastewater in two-module expanded granular sludge bed. Biotechnology Progress, 1998, 14: 856–864

    Article  CAS  Google Scholar 

  24. Rebac S, Gerbens S, Lens P N L, van Lier J B, Stams A J M, Lettinga G. Kinetics of fatty acid degradation by psychrophilically cultivated anaerobic sludge. Bioresource Technology, 1999, 69: 241–248

    Article  CAS  Google Scholar 

  25. Rebac S, van Lier J B, Lens P N L, Stams A J M, Dekkers F, Swinkels K T M, Lettinga G. Psychrophilic anaerobic treatment of low strength wastewaters. Water Science & Technolology, 1999, 39: 203–210

    Article  CAS  Google Scholar 

  26. van Lier J B, Rebac S, Lens P N L, van Bijnen F, Oude Elferink S J W H, Stams A J M, Lettinga, G. Anaerobic treatment of partly acidifled wastewater in a two-stage expanded granular sludge bed (EGSB) system at 8°C. Water Science & Technolology, 1997, 36: 317–324

    Google Scholar 

  27. Gonzalez-Gil, G, Seghezzo L, Lettinga G, Kleerebezem R. Kinetics and mass-transfer phenomena in anaerobic granular sludge. Biotechnology and Bioengineering, 2001, 73, 125–134

    Article  CAS  Google Scholar 

  28. Tawlik A, Klapwijk A, Gohary F E, Lettinga G. Post-treatment of effluent of anaerobic (UASB) reactor treating domestic wastewater by a rotating biological contactor. Water Science & Technology, 2001, 45(10): 371–376

    Google Scholar 

  29. Tawflk A, Klapwijk A, El-Gohary F, Lettinga G. Treatment of anaerobically pre-treated domestic sewage by a rotating biological contactor. Water Research, 2002, 36(1): 147–155

    Article  Google Scholar 

  30. Tawflk A, Zeeman G, Klapwijk A, Sanders W, El-Gohary F, Lettinga G. Treatment of domestic sewage in a combined UASB/RBC system, Process optimization for irrigation purposes. Water Science & Technology, 2003, 48(1): 131–138

    Google Scholar 

  31. Buisman C J, Lettinga G. Sulphide removal from anaerobic waste treatment effluent of a papermill. Water Research, 1990, 24(3): 313–319

    Article  CAS  Google Scholar 

  32. Buisman C J, Ijspeert P, Janssen A, Lettinga G. Kinetics of chemical and biological sulphide oxidation in aqueous solutions. Water Research, 1990, 24(5): 667–671

    Article  CAS  Google Scholar 

  33. Buisman C J, Drieszen W, Meyer H, Lettinga G. Effect of organic substrates on biological sulphide oxidation. Applied Microbiology and Biotechnology, 1990, 33: 459–462

    Article  CAS  Google Scholar 

  34. Janssen A J H, Sleyster R, van der Kaa C, Jochemsen A, Bontsema J, Lettinga G. Biological sulphide oxidation in a fed-batch reactor. Biotechnology and Bioengineering, 1995, 47: 327–333

    Article  CAS  Google Scholar 

  35. Janssen A J H, de Keizer A, van Aelst A, Fokkink R, Yangling H, Lettinga G. Surface characteristics and aggregation of microbiologically produced sulphur particles in relation to the process conditions. Colloids Surfaces B: Biointerfaces, 1996, 6: 115–129

    Article  CAS  Google Scholar 

  36. Janssen A J H, Ma S C, Lens P, Lettinga G. Performance of a sulphide-oxidizing expanded-bed reactor supplied with dissolved oxygen. Biotechnology Bioengineering, 1997, 53: 32–40

    Article  CAS  Google Scholar 

  37. Janssen A J H, Meijer S, Bontsema J, Lettinga G. Application of the redox potential for controlling a sulphide oxidizing bioreactor. Biotechnology Bioengineering, 1998, 60: 147–155

    Article  CAS  Google Scholar 

  38. Sipma J, Janssen A J H, Hulshoff Pol L W, Lettinga G. Development of a novel Process for the Biological conversion of H2S and Methanethiol to Elemental Sulfur. Biotechnology and Bioengineering, 2003, 82(1): 1–11

    Article  CAS  Google Scholar 

  39. van den Bosch P L F, van Beusekom O C, Buisman C J N, Janssen A J H. Sulflde oxidation at halo-alkaline conditions in a fed batch bioreactor. Biotechnology and Bioengineering, 2007, 97(5) 1053–1063

    Article  CAS  Google Scholar 

  40. van den Bosch P L F. Biological sulflde oxidation by natronalakliphilic bacteris, Dissertation for the Doctor Degree. Netherlands: Wageningen University, 2008

    Google Scholar 

  41. van Leerdam R C. Anaerobic degradation of methanethiol in a process for liquefled petroleum gas (LPG) biodesulfurization. Dissertation for the Doctor Degree. Netherlands: Wageningen University, 2007

    Google Scholar 

  42. Strous M, van Gerven E, Zheng P, Kuenen J G, Jetten M S M. Ammomia removal from concentrated waste streams with the anaerobic ammoinium oxidation (ANAMMOX) process in different reaction conflgurations. Water Research, 1997, 31: 1955–1962

    Article  CAS  Google Scholar 

  43. El-Shafai S A, El-Gohary F A, Nasr F A, van der Steen P, Gijzen H J H. Nutrient recovery from UASB effluent using duckweed. In: Proceedings 9th World Congress AD-Part 2, Antwerpen, 2001, 155–157

  44. Gijzen H. Anaerobic digestion for sustainable development: A natural approach. Water Science & Technology, 2001, 45(10): 321–328

    Google Scholar 

  45. Chernicharo C A L, Nascimento M C P. Feasibility of a pilot-scale UASB/trickling fllter system for domestic sewage treatment. Water Science & Technology, 2001, 44(4): 221–228

    CAS  Google Scholar 

  46. Lettinga G, Rebac S, Parshina S, Novzhevnikova A, van Lier J S, Stam A J M. High-rate anaerobic treatment of wastewater at low temperatures. Applied & Environmental Microbiology, 1999, 1696–1702

  47. Batstone J D, Landelli J, Saunders A, Carrosco E F, Black L L, Keller R J. The influence of Calcium on granular sludge in a full scale UASB treating paper mill wastewater. Water Science & Technology, 2001, 45(10): 187–193

    Google Scholar 

  48. van Langerak E P A, Hamelers H V M, Lettinga G. Influent calcium removal by crystallization reusing anaerobic effluent alkalinity. Water Science & Technolology, 1997, 36: 341–348

    Article  Google Scholar 

  49. van Langerak E P A. Control of calcium carbonate precipitation in anaerobic reactors. Dissertation for the Doctor Degree. Netherlands: Wageningen University, 1998

    Google Scholar 

  50. van Langerak E P A, Beekmans M M H, Beun J J, Hamelers H V M, Lettinga G. Influence of phosphate and iron on the extent of calcium carbonate precipitation during anaerobic digestion. Journal of Chemical Technology & Biotechnology, 1999, 74: 1030–1036

    Article  Google Scholar 

  51. van Langerak E P A, Ramaekers H, Wiechers J, Veeken A H M, Hamelers H V M, Lettinga G. Impact of location of CaCO3 precipitation on the development of intact anaerobic sludge. Water Research, 2000, 34(2): 437–446

    Article  Google Scholar 

  52. Lettinga G, Hulshoff Pol L W, Wiegant W M, de Zeeuw W J, Hobma S W, Grin P C, R E Roersma, Ayed S, van Velsen A F M. Upflow Sludge Blanket Processes. In: Proceedings 3rd Int A D Symposium, Boston, 1983, 139–158

  53. van Lier J P, van der Zee F P, Tan N C G, Rebac S, Klerebezedm R. Advances in high rate anaerobic treatment: staging of reactor systems. Water Science & Technolology, 2001, 44(8): 15–25

    Google Scholar 

  54. Vogelaar J C T, Wal F van der, Lettinga G. A new post-treatment system for anaerobic effluents containing a high Ca2+ content. Biotechnology Letters, 2002, 24: 1981–1986

    Article  CAS  Google Scholar 

  55. Vallero M V G, Hulshoff Pol L W, Lens P N L, Lettinga G. Effect of high salinity on the fate of methanol during the start-up of thermophilic (55°C) sulfate reducing reactors. Water Science & Technology, 2002, 45(10): 121–126

    CAS  Google Scholar 

  56. Vallero M V G, Hulshoff Pol L W, Lettinga G, Lens P N L. Effect of NaCl on thermophilic (55°C) methanol degradation in sulfate reducing granular sludge reactors. Water Research, 2003, 37(10): 2269–2280

    Article  CAS  Google Scholar 

  57. Vallero M V G, Lettinga G, Lens P N L. Assessment of compatible solutes to overcome salinity stress in thermophilic (55°C) methanol-fed sulphate reducing granular sludge’s. Water Science & Technology, 2003, 48(6): 195–202

    CAS  Google Scholar 

  58. Vallero M V G, Sipma J, Lettinga G, Lens P N L. High-Rate Sulfate Reduction at High Salinity in Mesophilic UASB Reactors. Biotechnology and Bioengineering, 2004, 86(2): 226–235

    Article  CAS  Google Scholar 

  59. Vallero M V G, Lettinga G, Lens P N L. High rate sulfate reduction in a submerged anaerobic membrane bioreactor (SAMBaR) at high salinity. Journal of Membrane Science, 2005, 253(1–2): 217–232

    Article  CAS  Google Scholar 

  60. Scherer P, Lippert H, Wolff G. Composition of the major elements and trace elements of 10 methanogenic bacteria determined by inductively coupled plasma emission spectrometry. Biological Trace Element Research, 1983, 5: 149–163

    Article  CAS  Google Scholar 

  61. Speece R E, McCarty P L. Nutrient requirements and biological solids accumulation in anaerobic digestion. Advanced Water Pollution Research, 1964, 2: 305–322

    Google Scholar 

  62. Speece R E, Gallagher D, Parkin G F. Nickel stimulation of anaerobic digestion. Water Research, 1983, 17: 677–683

    Article  CAS  Google Scholar 

  63. Speece R E. Anaerobic Biotechnology and Odor/Corrosion-Control for Municipalities and Industries. Nashville: Archae Press, 2008, 405–430

    Google Scholar 

  64. Takashima M, Speece R E. Mineral requirements for high-rate methane fermentation of acetate at low SRT. Journal Water Pollution Control Fed, 1989, 61: 1645–1650

    CAS  Google Scholar 

  65. Florencio L, Jenicek P, Field J A, Lettinga G. Effect of cobalt on the anaerobic degradation of methanol. Journal of Fermentation and Bioengineering, 1993, 75(5): 368–374

    Article  CAS  Google Scholar 

  66. Florencio L, Field J A, Lettinga G. The importance of cobalt for individual trophic groups in an anaerobic methanol degrading consortium. Applied and Environmental Microbiology, 1994, 60: 227–234

    CAS  Google Scholar 

  67. Florencio L, Field J A, Lettinga G. The role of cobalt on individual trophic groups in an anaerobic methanol degrading consortium. Applied and Environmental Microbiology, 1994, 60: 227–234

    CAS  Google Scholar 

  68. Paulo P L, Jiang B, Cysneiros D, Lettinga G. Effect of cobalt on the anaerobic thermophilic conversion of methanol. Biotechnology and Bioengineering, 2004, 85(4): 434–441

    Article  CAS  Google Scholar 

  69. Florencio L, Field J A, Lettinga G. Substrate competition between methanogens and acetogens during the degradation of methanol in UASB reactors. Water Research, 1995, 29(3): 915–922

    Article  CAS  Google Scholar 

  70. Zandvoort M H, Geerts R, Lettinga G, Lens P N L. Effect of longterm cobalt deprivation on methanol degradation in a methanogenic granular sludge bioreactor. Biotechnology Progress, 2002, 18(6): 1233–1239

    Article  CAS  Google Scholar 

  71. Zandvoort M H, Osuna M B, Geerts R, Lettinga G, Lens P N L. Effect of nickel deprivation on methanol degradation in a methanogenic granular sludge bioreactor. Journal of Industrial Microbiology and Biotechnology, 2002, 29: 268–274

    Article  CAS  Google Scholar 

  72. Zandvoor M H, Geerts R, Lettinga G, Lens P N L. Methanol degradation in granular sludge reactors at sub-optimal metal concentrations: role of iron, nickel and cobalt. Enzyme and Microbial Technology, 2003, 33: 190–198

    Article  CAS  Google Scholar 

  73. Zandvoort M H, Gieteling J, Lettinga G, Lens P N L. Stimulation of Methanol Degradation in UASB Reactors: In situ versus preloading cobalt on anaerobic granular sludge. Biotechnology and Bioengineering, 2004, 87(7): 897–904

    Article  CAS  Google Scholar 

  74. Zandvoort M. Trace metal dynamics in methanol fed anaerobic granular sludge bed reactors. Dissertation for the Doctor Degree. Netherlands: Wageningen University, 2005

    Google Scholar 

  75. Jansen S, Steffen F, Threels W F, van Leeuwen H P. Environmental Science Technology, 2005, 39(24): 9493–9499

    Article  CAS  Google Scholar 

  76. Field J A, Lettinga G, Geurts M. The methanogenic toxicity and anaerobic degradability of potato starch wastewater phenolic amino acids. Biological Wastes, 1987, 21(1): 37–54

    Article  CAS  Google Scholar 

  77. Alphenaar P A. Anaerobic granular sludge. Dissertation for the Doctor Degree, Netherlands: Wageningen University, 1994

    Google Scholar 

  78. Alphenaar P A, Sleyster R, de Reuver P, Ligthart G J, Lettinga G. Phosphorus Requirement in High Rate Anaerobic Wastewater Treatment. Water Research, 1993, 27(5): 749–756

    Article  CAS  Google Scholar 

  79. Bechtold T, Burtscher E, Turccanu, A. Anthraquinones as mediators for the direct cathodic reduction of dispersed dyestuffs. Journal of Electroanalytical Chemistry, 1999, 465: 80–87

    Article  CAS  Google Scholar 

  80. Cervantes F J, Dijksma W, Tuan D D, Ivanova A, Lettinga G, Field J A. Anaerobic Mineralization of Toluene by Enriched Sediments with Quinones and Humus as Terminal Electron Acceptors. Applied and Environmental Microbiology, 2001, 67(10): 4471–4478

    Article  CAS  Google Scholar 

  81. Cervantes F J, van der Zee F P, Lettinga G, Field J A. Enhanced decolourisation of Acid Orange 7 in a continuous UASB reactor with quinones as redox mediators. Water Science & Technology, 2001, 44(4): 123–128

    CAS  Google Scholar 

  82. Cervantes F J, Duong-Dac T, Roest K, Akkermans A D L, Lettinga G, Field J A. Enrichment and immobilization of quinone-respiring bacteria in anaerobic granular sludge. Water Science & Technology, 2003, 48(6): 9–16

    CAS  Google Scholar 

  83. Cervantes F J, Vu-Thi-Thu L, Lettinga G, Field J A. Quinonerespiration improves dechlorination of carbon tetrachloride by anaerobic sludge. Applied Microbiology and Biotechnology, 2004, 64(5): 702–711

    Article  CAS  Google Scholar 

  84. Field J A, Cervantes F J, van der Zee F P, Lettinga G. Role of quinones in the biodegradation of priority pollutants: A review. Water Science and Technology, 2000, 42(5–6): 215–222

    CAS  Google Scholar 

  85. Field J A, Sierra-Alvarez R. Biodegradability of chlorinated solvents and related chlorinated compounds. Reviews in Environmental Science and Biotechnology, 2004, 3: 185–254

    Article  CAS  Google Scholar 

  86. van der Zee F P, Bouwman R H M, Strik B, Lettinga G, Field J A. Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnology and Bioengineering, 2001, 75(6): 691–701

    Article  Google Scholar 

  87. van der Zee F P, Lettinga G, Field J A. Azo dye decolourisation by anaerobic granular sludge. Chemosphere, 2001, 44(5): 1169–1176

    Article  Google Scholar 

  88. Barkovskii A L, Adriaens P. Impact of humic constituents on microbial de-chlorination of polychlorinated dioxins. Environmental Toxicology & Chemistry, 1998, 17: 1013–1020

    Article  CAS  Google Scholar 

  89. Hulshoff Pol LW, Lens P N L, Stams A J M, Lettinga G. Anaerobic treatment of sulphate-rich wastewaters. Biodegradation, 1998, 9: 213–224

    Article  CAS  Google Scholar 

  90. Lens P N L, van den Bosch M C, Hulshoff Pol L W, Lettinga G. Effect of staging on volatile fatty acid degradation in a sulfldogenic granular sludge reactor. Water Research, 1998, 32: 1178–1192

    Article  CAS  Google Scholar 

  91. Lens P N L, Hulshoff Pol LW, Lettinga G. Anaerobic treatment of sulfate-rich wastewaters. Recent Research Develop. Biotechnology Bioengineering, 1999, 2: 95–107

    CAS  Google Scholar 

  92. Lens P N L, Korthout D, Lier J B van, Hulshoff Pol L W, Lettinga G. Effect of the liquid upflow velocity on thermophilic sulphate reduction in acidifying granular sludge reactors. Environmental Technology, 2001, 22: 183–193

    Article  CAS  Google Scholar 

  93. Visser A, Gao Y, Lettinga G. Effects of pH on methanogenesis and sulphate reduction in thermophilic (55°C) UASB reactors. Bioresource Technology, 1993, 44: 113–121

    Article  CAS  Google Scholar 

  94. Visser A, Alphenaar P A, Gao Y, Lettinga G. Granulation and immobilisation of methanogenic and sulfate-reducing bacteria in high rate anaerobic reactors. Applied Microbiology and Biotechnology, 1993, 40: 575–580

    CAS  Google Scholar 

  95. Visser A, Gao Y, Lettinga G. Effects of short-term temperature increases on the mesophilic anaerobic breakdown of sulphate containing synthetic wastewater. Water Research, 1993, 27: 541–550

    Article  CAS  Google Scholar 

  96. Visser A, Beeksma I, van der Zee F, Stams A J M, Lettinga G. Anaerobic degradation of volatile fatty acids at different sulphate concentrations. Applied Microbiology and Biotechnology, 1993, 40: 549–556

    CAS  Google Scholar 

  97. Visser A, Hulshoff Pol LW, Lettinga G. Competition of methanogenic and sulfldogenic bacteria. Water Science & Technolology, 1996, 33: 99–110

    Article  CAS  Google Scholar 

  98. Rintala J, Sanz Martin J L, Lettinga G. Thermophilic anaerobic treatment of sulfate-rich pulp and paper integrate process water. Water Science & Technolology, 1991, 24(3–4), 149–137

    CAS  Google Scholar 

  99. van Houten R T, Yun S Y, Lettinga G. Thermophilic sulphate and sulphite reduction in lab-scale gas-lift reactors using H2 and CO2 as energy and carbon source. Biotechnology and Bioengineering, 1997, 55: 807–814

    Article  Google Scholar 

  100. van Langerak E P A, Hamelers H V M, Lettinga G. Influent calcium removal by crystallization reusing anaerobic effluent alkalinity. Water Science & Technolology, 1997, 36: 341–348

    Article  Google Scholar 

  101. Weijma J, Gubbels F, Hulshoff Pol LW, Stams A J M, Lens P N L, Lettinga G. Competition for H2 between sulfate reducers, methanogens and homoacetogens in a gas-lift reactor. Water Science & Technology, 2002, 45(10): 75–80

    CAS  Google Scholar 

  102. Young J C, McCarty P L. The anaerobic fllter for wastewater treatment. Journal WPCF, 1969, 41(5): 160–173

    Google Scholar 

  103. Hulshoff Pol L W, De Zeeuw W J, Velzeboer C T M, Lettinga G. Granulation in UASB-reactors. Water Science & Technology, 1981, 15: 291–304

    Google Scholar 

  104. Hulshoff Pol L W, De Zeeuw W J, Velzeboer C T M, Lettinga G. Granulation in UASB-reactors. Water Science and Technology, 1983, 15: 291–304

    CAS  Google Scholar 

  105. Fang H H P, Liu H. Granulation of a hydrogen-producing acidogenic sludge. In: Proceedings 9thWorld Congress AD-Part 2, Antwerpen, 2001, 527–532

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lettinga.

Additional information

Gatze Lettinga received his PhD in the Technical University Delft and the Inter University Reactor Institute, Delft. He joined the faculty of Wageningen Agricultural University in the Department of Environmental Technology in 1970 and rose through the ranks to Professor in Environmental Technology in 1988. Prof. Lettinga developed from the Netherlands his Upflow Anaerobic Sludge Bed Reactor system (UASB). He and his colleagues expanded the application of the system to a great variety of industrial effluents, including quite complex and even toxic wastewaters. The technology has been widely used by both industry and municipalities, since Prof. Lettinga has chosen not to patent this invention and has also shared his knowledge with young water engineers and professionals all over the world. The 2007 Tyler Prize for Environmental Achievement is awarded to him in recognition of his research and development of the environmentally sound novel process for the treatment of polluted wastewater and its implementation worldwide, especially in developing countries.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lettinga, G. Challenges of a feasible route towards sustainability in environmental protection. Front. Environ. Sci. Eng. China 4, 123–134 (2010). https://doi.org/10.1007/s11783-010-0028-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11783-010-0028-1

Keywords

Navigation