Skip to main content

Biosorption of Cr(III) from aqueous solution by freeze-dried activated sludge: Equilibrium, kinetic and thermodynamic studies

Abstract

Batch biosorption experiments were conducted to remove Cr(III) from aqueous solutions using activated sludge from a sewage treatment plant. An investigation was conducted on the effects of the initial pH, contact time, temperature, and initial Cr(III) concentration in the biosorption process. The results revealed that the activated sludge exhibited the highest Cr(III) uptake capacity (120 mg·g−1) at 45°C, initial pH of 4, and initial Cr(III) concentration of 100 mg·L−1. The biosorption results obtained at various temperatures showed that the biosorption pattern accurately followed the Langmuir model. The calculated thermodynamic parameters, ΔGo° ( − 0.8–4.58 kJ·mol−1), ΔH° (15.6–44.4 kJ·mol−1), and ΔS° (0.06–0.15 kJ·mol−1·K−1) clearly indicated that the biosorption process was feasible, spontaneous, endothermic, and physical. The pseudo first-order and second-order kinetic models were adopted to describe the experimental data, which revealed that the Cr(III) biosorption process conformed to the second-order rate expression and the biosorption rate constants decreased with increasing Cr (III) concentration. The analysis of the values of biosorption activation energy (E a = −7 kJ·mol−1) and the intraparticle diffusion model demonstrated that Cr(III) biosorption was film-diffusion-controlled.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Yun Y S, Park D, Park J M, Volesky B. Biosorption of trivalent chromium on the brown seaweed biomass. Environmental Science & Technology, 2001, 35(21): 4353–4358

    CAS  Article  Google Scholar 

  2. 2.

    Febrianto J, Kosasih A N, Sunarso J, Ju Y H, Indraswati N, Ismadji S. Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies. Journal of Hazardous Materials, 2009, 162(2–3): 616–645

    CAS  Article  Google Scholar 

  3. 3.

    Hammaini A, González F, Ballester A, Blázquez M L, Muñoz J A. Biosorption of heavy metals by activated sludge and their desorption characteristics. Journal of Environmental Management, 2007, 84(4): 419–426

    CAS  Article  Google Scholar 

  4. 4.

    Sari A, Mendil D, Tuzen M, Soylak M. Biosorption of Cd(II) and Cr(III) from aqueous solution by moss (Hylocomium splendens) biomass: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 2008, 144(1): 1–9

    CAS  Article  Google Scholar 

  5. 5.

    Zubair A, Bhatti H N, Hanif M A, Shafqat F. Kinetic and equilibrium modeling for Cr(III) and Cr(VI) removal from aqueous solutions by citrus reticulata waste biomass. Water, Air, & Soil Pollution, 2008, 191: 305–318

    CAS  Article  Google Scholar 

  6. 6.

    Pavasant P, Apiratikul R, Sungkhum V, Suthiparinyanont P, Wattanachira S, Marhaba T F. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresource Technology, 2006, 97(18): 2321–2329

    CAS  Google Scholar 

  7. 7.

    Aksu Z, Açikel U, Kabasakal E, Tezer S. Equilibrium modeling of individual and simultaneous biosorption of chromium(VI) and nickel(II) onto dried activated sludge. Water Research, 2002, 36(12): 3063–3073

    CAS  Article  Google Scholar 

  8. 8.

    Luo S, Yuan L, Chai L, Min X, Wang Y, Fang Y, Wang P. Biosorption behaviors of Cu2+, Zn2+, Cd2+ and mixture by waste activated sludge. Transactions of Nonferrous Metals Society of China, 2006, 16(6): 1431–1435

    CAS  Article  Google Scholar 

  9. 9.

    Iddou A, Ouali M S. Waste-activated sludge (WAS) as Cr(III) sorbent biosolid from wastewater effluent. Colloids and Surfaces. B, Biointerfaces, 2008, 66(2): 240–245

    CAS  Article  Google Scholar 

  10. 10.

    Li Y S, Liu C C, Chiou C S. Adsorption of Cr(III) from wastewater by wine processing waste sludge. Journal of Colloid and Interface Science, 2004, 273(1): 95–101

    CAS  Article  Google Scholar 

  11. 11.

    Zhang Y, Banks C. A comparison of the properties of polyurethane immobilized Sphagnum moss, seaweed, sunflower waste and maize for the biosorption of Cu, Pb, Zn and Ni in continuous flow packed columns. Water Research, 2006, 40(4): 788–798

    CAS  Article  Google Scholar 

  12. 12.

    Kılıç M, Keskin M E, Mazlum S, Mazlum N. Hg(II) and Pb(II) adsorption on activated sludge biomass: Effective biosorption mechanism. International Journal of Mineral Processing, 2008, 87(1–2): 1–8

    Google Scholar 

  13. 13.

    Gupta V K, Rastogi A. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions. Journal of Hazardous Materials, 2009, 163(1): 396–402

    CAS  Article  Google Scholar 

  14. 14.

    Baral S S, Das S N, Rath P. Hexavalent chromium removal from aqueous solution by adsorption on treated sawdust. Biochemical Engineering Journal, 2006, 31(3): 216–222

    CAS  Article  Google Scholar 

  15. 15.

    Meena A K, Kadirvelu K, Mishraa G K, Rajagopal C, Nagar P N. Adsorption of Pb(II) and Cd(II) metal ions from aqueous solutions by mustard husk. Journal of Hazardous Materials, 2008, 150(3): 619–625

    CAS  Article  Google Scholar 

  16. 16.

    Lodeiro P, Barriada J L, Herrero R, Sastre de Vicente M E. The marine macroalga Cystoseira baccata as biosorbent for cadmium(II) and lead(II) removal: kinetic and equilibrium studies. Environmental Pollution, 2006, 142(2): 264–273

    CAS  Article  Google Scholar 

  17. 17.

    Blázquez G, Hernáinz F, Calero M, Martín-Lara M A, Tenorio G. The effect of pH on the biosorption of Cr (III) and Cr (VI) with olive stone. Chemical Engineering Journal, 2009, 148(2–3): 473–479

    Article  Google Scholar 

  18. 18.

    Kratochvil D, Pimentel P, Volesky B. Removal of trivalent and hexavalent chromium by seaweed biosorbent. Environmental Science & Technology, 1998, 32(18): 2693–2698

    CAS  Article  Google Scholar 

  19. 19.

    Benhammou A, Yaacoubi A, Nibou L, Tanouti B. Study of the removal of mercury(II) and chromium(VI) from aqueous solutions by Moroccan stevensite. Journal of Hazardous Materials, 2005, 117(2–3): 243–249

    CAS  Article  Google Scholar 

  20. 20.

    Guibal E, Jansson-Charrier M, Saucedo I, Le Cloirec P. Enhancement of metal ion sorption performances of chitosan: effect of the structure on the diffusion properties. Langmuir, 1995, 11(2): 591–598

    CAS  Article  Google Scholar 

  21. 21.

    Webi T W, Chakravort R K. Pore and solid diffusion models for fixed bed adsorbers. AIChE Journal, 2004, 20(2): 228–238

    Article  Google Scholar 

  22. 22.

    Boyd G E, Adamson A W, Myers Jr. L S. The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. Journal of the American Chemical Society, 1947, 69(11): 2836–2848

    CAS  Article  Google Scholar 

  23. 23.

    El-Kamash A M, Zaki A A, Abed El Geleel M A. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A. Journal of Hazardous Materials, 2005, 127(1–3): 211–220

    CAS  Article  Google Scholar 

  24. 24.

    Kannan N, Sundaram M M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons- a comparative study. Dyes and Pigments, 2001, 51(1): 25–40

    CAS  Article  Google Scholar 

  25. 25.

    Chen H, Wang A. Adsorption characteristics of Cu(II) from aqueous solution onto poly(acrylamide)/attapulgite composite. Journal of Hazardous Materials, 2009, 165(1–3): 223–231

    CAS  Article  Google Scholar 

  26. 26.

    Wan Ngah W S, Kamari A, Fatinathan S, Ng P W. Adsorption of chromium from aqueous solution using chitosan beads. Adsorption, 2006, 12(4): 249–257

    Article  Google Scholar 

  27. 27.

    Akhtar N, Iqbal M, Zafar S I, Iqbal J. Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). Journal of Environmental Sciences (China), 2008, 20(2): 231–239

    CAS  Google Scholar 

  28. 28.

    Calfa B A, Torem M L. On the fundamentals of Cr(III) removal from liquid streams by a bacterial strain. Minerals Engineering, 2008, 21(1): 48–54

    CAS  Article  Google Scholar 

  29. 29.

    Chu B S, Baharin B S, Che Man Y B, Quek S Y. Separation of vitamin E from palm fatty acid distillate using silica. Equilibrium of batch adsorption. Journal of Food Engineering, 2004, 62(1): 97–103

    Article  Google Scholar 

  30. 30.

    Jaycock M J, Parfitt G D. Chemistry of Interfaces, Onichester, Ellis Horwood Ltd, 1981

    Google Scholar 

  31. 31.

    Boyd G E, Soldano B A. Self-diffusion of cations in and through sulfonated polystyrene cation-exchange polymers. Journal of the American Chemical Society, 1953, 75(24): 6091–6099

    CAS  Article  Google Scholar 

  32. 32.

    Basha S, Murthy Z V P. Kinetic and equilibrium models for biosorption of Cr(VI) on chemically modified seaweed Cystoseira indica. Process Biochemistry, 2007, 42(11): 1521–1529

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pinjing He.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yao, Q., Zhang, H., Wu, J. et al. Biosorption of Cr(III) from aqueous solution by freeze-dried activated sludge: Equilibrium, kinetic and thermodynamic studies. Front. Environ. Sci. Eng. China 4, 286–294 (2010). https://doi.org/10.1007/s11783-010-0025-4

Download citation

Keywords

  • activated sludge
  • biosorption
  • chromium
  • film diffusion
  • kinetics
  • thermodynamics