Advertisement

Effects of nitrate concentration on biological hydrogen production by mixed cultures

  • Bo Wang
  • Wei Wan
  • Jianlong WangEmail author
Research Article

Abstract

The effects of nitrate on fermentative hydrogen production and soluble metabolites from mixed cultures were investigated by varying nitrate concentrations from 0 to 10 g N/L at 35°C with an initial pH of 7.0. The results showed that the substrate degradation rate, hydrogen production potential, hydrogen yield, and average hydrogen production rate initially increased with increasing nitrate concentrations from 0 to 0.1 g N/L, while they decreased with increasing nitrate concentrations from 0.1 to 10 g N/L. The maximum hydrogen production potential of 305.0 mL, maximum hydrogen yield of 313.1 mL/g glucose, and maximum average hydrogen production rate of 13.3 mL/h were obtained at a nitrate concentration of 0.1 g N/L. The soluble metabolites produced by the mixed cultures contained only ethanol and acetic acid (HAc) without propionic acid (HPr) and butyric acid (HBu). This study used the Modified Logistic model to describe the progress of cumulative hydrogen production in batch tests. A concise model was proposed to describe the effects of nitrate concentration on average hydrogen production rate.

Keywords

nitrogen source biohydrogen fermentative hydrogen production quantitative kinetic model 

References

  1. 1.
    Wang J L, Wan W. Kinetic models for fermentative hydrogen production: a review. Int J Hydrogen Energy, 2009, 34(8): 3313–3323CrossRefGoogle Scholar
  2. 2.
    Wang J L, Wan W. Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy, 2009, 34(2): 799–811CrossRefGoogle Scholar
  3. 3.
    Wang J L, Wan W. Experimental design methods for fermentative hydrogen production: a review. Int J Hydrogen Energy, 2009, 34(1): 235–244CrossRefGoogle Scholar
  4. 4.
    Wang J L, Wan W. Application of desirability function based on neural network for optimizing biohydrogen production process. Int J Hydrogen Energy, 2009, 34(3): 1253–1259CrossRefGoogle Scholar
  5. 5.
    Wang J L, Wan W. Optimization of fermentative hydrogen production process using genetic algorithm based on neural network and response surface methodology. Int J Hydrogen Energy, 2009, 34(1): 255–261CrossRefGoogle Scholar
  6. 6.
    Wang J L, Wan W. Optimization of fermentative hydrogen production process by response surface methodology. Int J Hydrogen Energy, 2008, 33(23): 6976–6984CrossRefGoogle Scholar
  7. 7.
    Wang B, Wan W, Wang J L. Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production. Int J Hydrogen Energy, 2008, 33(23): 7013–7019CrossRefGoogle Scholar
  8. 8.
    Wang J L, Wan W. Effect of temperature on fermentative hydrogen production by mixed cultures. Int J Hydrogen Energy, 2008, 33(20): 5392–5397CrossRefGoogle Scholar
  9. 9.
    Wang J L, Wan W. Effect of Fe2+ concentrations on fermentative hydrogen production by mixed cultures. Int J Hydrogen Energy, 2008, 33(4): 1215–1220CrossRefGoogle Scholar
  10. 10.
    Wang J L, Wan W. Comparison of different pretreatment methods for enriching hydrogen-producing cultures from digested sludge. Int J Hydrogen Energy, 2008, 33(12): 2934–2941CrossRefGoogle Scholar
  11. 11.
    Wang J L, Wan W. Influence of Ni2+ concentration on biohydrogen production. Bioresour Technol, 2008, 99(18): 8864–8868CrossRefGoogle Scholar
  12. 12.
    Wang J L, Wan W. Investigating the effect of substrate concentration on biohydrogen production by using kinetic models. Sci China: Ser B, 2008, 52(11): 1110–1117CrossRefGoogle Scholar
  13. 13.
    Wang B, Wan W, Wang J L. Effect of ammonia nitrogen concentrations on fermentative hydrogen production by mixed cultures. Bioresour Technol, 2009, 100(3): 1211–1213CrossRefGoogle Scholar
  14. 14.
    Das D, Veziroglu T N. Advances in biological hydrogen production processes. Int J Hydrogen Energy, 2008, 33(21): 6046–6057CrossRefGoogle Scholar
  15. 15.
    Li C L, Fang H H P. Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Env Sci Technol, 2007, 37(3): 1–39CrossRefGoogle Scholar
  16. 16.
    Kim J O, Kim Y H, Yeom S H, Song B K, Kim I H. Enhancing continuous hydrogen gas production by the addition of nitrate into an anaerobic reactor. Process Biochem, 2006, 41(5): 1208–1212CrossRefGoogle Scholar
  17. 17.
    Lay J J, Fan K S, Hwang J I, Chang J I, Hsu P C. Factors affecting hydrogen production from food wastes by Clostridium-rich composts. J Environ Eng, 2005, 131(4): 595–602CrossRefGoogle Scholar
  18. 18.
    Yokoyama H, Waki M, Ogino A, Ohmori H, Tanaka Y. Hydrogen fermentation properties of undiluted cow dung. J Biosci Bioeng, 2007, 104(1): 82–85CrossRefGoogle Scholar
  19. 19.
    Bisaillon A, Turcot J, Hallenbeck P C. The effect of nutrient limitation on hydrogen production by batch cultures of Escherichia coli. Int J Hydrogen Energy, 2006, 31(11): 1504–1508CrossRefGoogle Scholar
  20. 20.
    Liu G Z, Shen J Q. Effects of culture and medium conditions on hydrogen production from starch using anaerobic bacteria. J Biosci Bioeng, 2004, 98(4): 251–256Google Scholar
  21. 21.
    Whang L M, Hsiao C J, Cheng S S. A dual-substrate steady-state model for biological hydrogen production in an anaerobic hydrogen fermentation process. Biotechnol Bioeng, 2006, 95(3): 492–500CrossRefGoogle Scholar
  22. 22.
    Morimoto M, Atsuko M, Atif A AY, Ngan M A, Razi A F, Iyuke S E, Bakir A M. Biological production of hydrogen from glucose by natural anaerobic microflora. Int J Hydrogen Energy, 2004, 29(7): 709–713CrossRefGoogle Scholar
  23. 23.
    Salerno MB, Park W, Zuo Y, Logan B E. Inhibition of biohydrogen production by ammonia. Water Res, 2006, 40(6): 1167–1172CrossRefGoogle Scholar
  24. 24.
    Chen Y, Cheng J J, Creamer K S. Inhibition of anaerobic digestion process: A review. Bioresour Technol, 2008, 99(10): 4044–4064CrossRefGoogle Scholar
  25. 25.
    Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 1959, 31(3): 426–427CrossRefGoogle Scholar
  26. 26.
    APHA. Standard Methods for the Examination of Water and Wastewater. Washington DC: American Public Health Association, 1995Google Scholar
  27. 27.
    Mohan S V, Babu V L, Sarma P N. Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour Technol, 2008, 99(1): 59–67CrossRefGoogle Scholar
  28. 28.
    Li J Z, Ren N Q, Li B K. Anaerobic biohydrogen production from monosaccharides by a mixed microbial community culture. Bioresour Technol, 2008, 99(14): 6528–6537CrossRefGoogle Scholar
  29. 29.
    Oh S E, Ginkel S V, Logan B E. The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environ Sci Technol, 2003, 37(22): 5186–5190CrossRefGoogle Scholar
  30. 30.
    Mu Y, Zheng X J, Yu H Q, Zhu R F. Biological hydrogen production by anaerobic sludge at various temperatures. Int J Hydrogen Energy, 2006, 31(6): 780–785CrossRefGoogle Scholar
  31. 31.
    Fang H H P, Liu H. Effect of pH on hydrogen production from glucose by mixed culture. Bioresour Technol, 2002, 82(1): 87–93CrossRefGoogle Scholar
  32. 32.
    Oh Y K, Seol E H, Kim J R, Park S. Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int J Hydrogen Energy, 2003, 28(12): 1353–1359CrossRefGoogle Scholar
  33. 33.
    Chittibabu G, Nath K, Das D. Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Process Biochem, 2006, 41(3): 682–688CrossRefGoogle Scholar
  34. 34.
    Morimoto M, Atsuko M, Atif A A Y, Ngan M A, Fakhru’l-Razi A, Iyuke S E, Bakir A M. Biological production of hydrogen from glucose by natural anaerobic microflora. Int J Hydrogen Energy, 2004, 29(7): 709–713CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina

Personalised recommendations