Skip to main content
Log in

Thermal and pressure performance of heat collection tube group in backfill body added with phase change material

含相变材料的充填体内置采热管群热压性能研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Combined with the backfill mining, the heat collection tube group (HCTG) in the backfill body can extract geothermal energy, which can effectively alleviate heat damage caused by high ground temperature. This paper takes the HCTG as research object, the temperature, velocity and pressure distribution of the heat transfer fluid (HTF) during the heat release process of the backfill body were analyzed, and the influences of Re, tube diameter, tube spacing and tube arrangement on the performance of the HCTG were discussed. The results show that the heat transfer capacity increases from 2.24×103 kJ to 16.78×103 kJ and the comprehensive evaluation factor increases from 0.087 to 1.31 for Re from 100 to 5000. The heat transfer capacity increases from 15.07×103 kJ to 17.11×103 kJ and the comprehensive evaluation factor increases from 1.157 to 1.388 for tube diameter from 4 mm to 6 mm. The heat transfer capacity increases from 14.24>103 kJ to 16.25>103 kJ and the comprehensive evaluation factor increases from 1.013 to 1.263 for tube spacing from 130 mm to 170 mm. In addition, the four-way parallel arrangement can ensure higher heat transfer capacity and lower pressure drop, and obtain a higher comprehensive evaluation factor. The research provides a theoretical reference for the design and optimization of HCTG in the backfill body.

摘要

通过将采热管群与充填采矿技术相结合可提取矿井中的地热能,有效缓解高地热带来的热害问 题。本文以采热管群为研究对象,分析了充填体放热过程中传热流体的温度、速度和压力分布,讨论 了雷诺数、管径、管间距和管排方式对采热管群性能的影响。结果表明:当雷诺数从100 增加到5000 时,换热量从2.24×103 kJ 增加到16.78×103 kJ,综合评价因子从0.087 增加到1.31。当管径从4 mm增加 到 6 mm时,换热量从15.07×103 kJ 增加到17.11×103 kJ,综合评价因子从1.157 增加到1.388。当管间距 从130 mm增加到170 mm时,换热量从14.24×103 kJ 增加到16.25×103 kJ,综合评价因子从1.013 增加到 1.263。此外,四路并联布置可以保证较高的换热量和较低的压降,从而获得较高的综合评价因子。该 研究为充填体中采热管群的设计和优化提供了理论参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

A m :

Mushy zone constant

C :

Inertial coefficient (m−1)

C P :

Specific heat capacity (J/(kg·K))

\({\vec K}\) :

Body force in the momentum equation

\({\vec g}\) :

Acceleration of gravity (m/s2)

k :

Effective thermal conductivity (W/(m·K))

T :

Temperature (K)

N :

Permeability of porous foam (m−2)

PCM :

phase change material

d :

Diameter (m)

B :

Thermal expansion coefficient (K−1)

L :

Latent heat capacity

Nu :

Nusselt number

Q :

Heat transfer capacity (kJ)

q :

Heat flux (W/m2)

Re :

Reynolds number

\({\vec V}\) :

Velocity vector (m/s)

V :

Volume (m3)

β :

Liquid fraction

ρ :

Density (kg/m3)

γ :

Thermal conductivity (W/(m·K))

α :

Thermal diffusivity (m2/s)

ε :

Porosity

τ :

Dynamic viscosity (kg/(m·s))

τ :

Time (s)

f:

Reference

b:

Backfill body

mp:

Microcapsule PCM

in:

Inlet

out:

Outlet

l:

Liquid

s:

Solid

References

  1. CHEN Liu, LIU Lang, ZHANG Bo, ZHANG Xiao-yan, WANG Mei. Mechanism of backfill thermal utilization adsorption cooling system in deep mine [J]. Journal of China Coal Society, 2018, 43(2): 483–489. DOI: https://doi.org/10.13225/j.cnki.jccs.2017.1365. (in Chinese)

    Google Scholar 

  2. ZHU Li, CHEN S, YANG Yang, et al. Transient heat transfer performance of a vertical double U-tube borehole heat exchanger under different operation conditions [J]. Renewable Energy, 2019, 131: 494–505. DOI: https://doi.org/10.1016/j.renene.2018.07.073.

    Article  Google Scholar 

  3. DAI L H, SHANG Y, LI X L, et al. Analysis on the transient heat transfer process inside and outside the borehole for a vertical U-tube ground heat exchanger under short-term heat storage [J]. Renewable Energy, 2016, 87: 1121–1129. DOI: https://doi.org/10.1016/j.renene.2015.08.034.

    Article  Google Scholar 

  4. ZHANG Xiao-yan, XU Mu-yan, LIU Li, et al. The concept, technical system and heat transfer analysis on phase-change heat storage backfill for exploitation of geothermal energy [J]. Energies, 2020, 13(18): 4755. DOI: https://doi.org/10.3390/en13184755.

    Article  Google Scholar 

  5. ZHANG Xiao-yan, ZHAO Min, LIU Lang, et al. Numerical simulation on heat storage performance of backfill body based on tube-in-tube heat exchanger [J]. Construction and Building Materials, 2020, 265: 120340. DOI: https://doi.org/10.1016/j.conbuildmat.2020.120340.

    Article  Google Scholar 

  6. ZHAO Yu-jiao, LIU Lang, WEN De, et al. Recycling waste material for backfill coupled heat exchanger systems in underground stopes of mines [J]. Energy and Buildings, 2022, 256: 111703. DOI: https://doi.org/10.1016/j.enbuild.2021.111703.

    Article  Google Scholar 

  7. LIU Lang, XIN Jie, ZHANG Bo, et al. Basic theory and application exploration of functional filling in mines [J]. Journal of China Coal Science, 2018, 43(7): 1811–1820. DOI: https://doi.org/10.13225/j.cnki.jccs.2017.1626. (in Chinese)

    Google Scholar 

  8. WANG Mei, LIU Lang, ZHANG Xiao-yan, et al. Experimental and numerical investigations of heat transfer and phase change characteristics of cemented paste backfill with PCM [J]. Applied Thermal Engineering, 2019, 150: 121–131. DOI: https://doi.org/10.1016/j.applthermaleng.2018.12.103.

    Article  Google Scholar 

  9. WANG Mei, LIU Peng, SHANG Shi-yue, et al. Numerical and experimental studies on the cooling performance of backfill containing phase change materials [J]. Building and Environment, 2022, 218: 109155. DOI: https://doi.org/10.1016/j.buildenv.2022.109155.

    Article  Google Scholar 

  10. GHOREISHI-MADISEH S A, HASSANI F, ABBASY F. Numerical and experimental study of geothermal heat extraction from backfilled mine stopes [J]. Applied Thermal Engineering, 2015, 90: 1119–1130. DOI: https://doi.org/10.1016/j.applthermaleng.2014.11.023.

    Article  Google Scholar 

  11. QI Di, PU Liang, SUN Fu-tao, et al. Numerical investigation on thermal performance of ground heat exchangers using phase change materials as grout for ground source heat pump system [J]. Applied Thermal Engineering, 2016, 106: 1023–1032. DOI: https://doi.org/10.1016/j.applthermaleng.2016.06.048.

    Article  Google Scholar 

  12. ZHU Li, CHEN S, YANG Yang, et al. Transient heat transfer performance of a vertical double U-tube borehole heat exchanger under different operation conditions [J]. Renewable Energy, 2019, 131: 494–505. DOI: https://doi.org/10.1016/j.renene.2018.07.073.

    Article  Google Scholar 

  13. WANG Zhi-hua, WANG Feng-hao, LIU Jun, et al. Field test and numerical investigation on the heat transfer characteristics and optimal design of the heat exchangers of a deep borehole ground source heat pump system [J]. Energy Conversion and Management, 2017, 153: 603–615. DOI: https://doi.org/10.1016/j.enconman.2017.10.038.

    Article  Google Scholar 

  14. PU Liang, QI Di, LI Kang, et al. Simulation study on the thermal performance of vertical U-tube heat exchangers for ground source heat pump system [J]. Applied Thermal Engineering, 2015, 79: 202–213. DOI: https://doi.org/10.1016/j.applthermaleng.2014.12.068.

    Article  Google Scholar 

  15. ZHOU Kun, MAO Jin-feng, LI Yong, et al. Parameters optimization of borehole and internal thermal resistance for single U-tube ground heat exchangers using Taguchi method [J]. Energy Conversion and Management, 2019, 201: 112177. DOI: https://doi.org/10.1016/j.enconman.2019.112177.

    Article  Google Scholar 

  16. SANDLER S, ZAJACZKOWSKI B, BIALKO B, et al. Evaluation of the impact of the thermal shunt effect on the U-pipe ground borehole heat exchanger performance [J]. Geothermics, 2017, 65: 244–254. DOI: https://doi.org/10.1016/j.geothermics.2016.10.003.

    Article  Google Scholar 

  17. DAI L H, SHANG Y, LI X L, et al. Analysis on the transient heat transfer process inside and outside the borehole for a vertical U-tube ground heat exchanger under short-term heat storage [J]. Renewable Energy, 2016, 87: 1121–1129. DOI: https://doi.org/10.1016/j.renene.2015.08.034.

    Article  Google Scholar 

  18. CONGEDO P M, COLANGELO G, STARACE G. CFD simulations of horizontal ground heat exchangers: A comparison among different configurations [J]. Applied Thermal Engineering, 2012, 33–34: 24–32. DOI: https://doi.org/10.1016/j.applthermaleng.2011.09.005.

    Article  Google Scholar 

  19. ZHANG Xiao-yan, XU Mu-yan, LIU Lang, et al. Experimental study on thermal and mechanical properties of cemented paste backfill with phase change material [J]. Journal of Materials Research and Technology, 2020, 9(2): 2164–2175. DOI: https://doi.org/10.1016/j.jmrt.2019.12.047.

    Article  Google Scholar 

  20. EBRAHIMI A, HOSSEINI M J, RANJBAR A A, et al. Melting process investigation of phase change materials in a shell and tube heat exchanger enhanced with heat pipe [J]. Renewable Energy, 2019, 138: 378–394. DOI: https://doi.org/10.1016/j.renene.2019.01.110.

    Article  Google Scholar 

  21. SARDARI P T, GIDDINGS D, GRANT D, et al. Discharge of a composite metal foam/phase change material to air heat exchanger for a domestic thermal storage unit [J]. Renewable Energy, 2020, 148: 987–1001. DOI: https://doi.org/10.1016/j.renene.2019.10.084.

    Article  Google Scholar 

  22. MAHDI J M, MOHAMMED H I, HASHIM E T, et al. Solidification enhancement with multiple PCMs, cascaded metal foam and nanoparticles in the shell-and-tube energy storage system [J]. Applied Energy, 2020, 257: 113993. DOI: https://doi.org/10.1016/j.apenergy.2019.113993.

    Article  Google Scholar 

  23. ARMIN M, GHOLINIA M. Comparative evaluation of energy, performance, and emission characteristics in dual-fuel (CH4/Diesel) heavy-duty engine with RCCI combustion mode [J]. Results in Engineering, 2022, 16: 100766. DOI: https://doi.org/10.1016/j.rineng.2022.100766.

    Article  Google Scholar 

  24. MADIHI R, POURFALLAH M, GHOLINIA M, et al. Thermofluids analysis of combustion, emissions, and energy in a biodiesel (C11H22O2)/natural gas heavy-duty engine with RCCI mode (Part I: Single/two-stage injection) [J]. International Journal of Thermofluids, 2022, 16: 100227. DOI: https://doi.org/10.1016/j.ijft.2022.100227.

    Article  Google Scholar 

  25. MADIHI R, POURFALLAH M, GHOLINIA M, et al. Thermofluids analysis of combustion, emissions, and energy in a biodiesel (C11H22O2)/natural gas heavy-duty engine with RCCI mode (Part II: Fuel injection time/Fuel injection rate) [J]. International Journal of Thermofluids, 2022, 16: 100200. DOI: https://doi.org/10.1016/j.ijft.2022.100200.

    Article  Google Scholar 

  26. ESFAHANI M T, POURFALLAH M, SABET S S, et al. Optimisation of heat exchanger tubes of Iran’s gas pressure reduction station (City gas station of Gorgan): Experimental and numerical study [J]. International Journal of Ambient Energy, 2024, 45(1): 2142282. DOI: https://doi.org/10.1080/01430750.2022.2142282.

    Article  Google Scholar 

  27. ABDULATEEF A M, ABDULATEEF J, SOPIAN K, et al. Optimal fin parameters used for enhancing the melting and solidification of phase-change material in a heat exchanger unite [J]. Case Studies in Thermal Engineering, 2019, 14: 100487. DOI: https://doi.org/10.1016/j.csite.2019.100487.

    Article  Google Scholar 

  28. PRAVEEN B, SURESH S, PETHURAJAN V. Heat transfer performance of graphene nano-platelets laden micro-encapsulated PCM with polymer shell for thermal energy storage based heat sink [J]. Applied Thermal Engineering, 2019, 156: 237–249. DOI: https://doi.org/10.1016/j.applthermaleng.2019.04.072.

    Article  Google Scholar 

  29. LI Zhi-xiong, SHAHSAVAR A, AL-RASHED A A A A, et al. Effect of porous medium and nanoparticles presences in a counter-current triple-tube composite porous/nano-PCM system [J]. Applied Thermal Engineering, 2020, 167: 114777. DOI: https://doi.org/10.1016/j.applthermaleng.2019.114777.

    Article  Google Scholar 

  30. TALEBIZADEH SARDARI P, WALKER G S, GILLOTT M, et al. Numerical modelling of phase change material melting process embedded in porous media: Effect of heat storage size [J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2020, 234(3): 365–383. DOI: https://doi.org/10.1177/0957650919862974.

    Google Scholar 

  31. MAHDI J M, NSOFOR E C. Melting enhancement in triplex-tube latent heat energy storage system using nanoparticles-metal foam combination [J]. Applied Energy, 2017, 191: 22–34. DOI: https://doi.org/10.1016/j.apenergy.2016.11.036.

    Article  Google Scholar 

  32. VOLLER V R, PRAKASH C. A fixed grid numerical modelling methodology for convection-diffusion mushy region phase-change problems [J]. International Journal of Heat and Mass Transfer, 1987, 30(8): 1709–1719. DOI: https://doi.org/10.1016/0017-9310(87)90317-6.

    Article  Google Scholar 

  33. SHEIKHOLESLAMI M, LOHRASBI S, GANJI D D. Response surface method optimization of innovative fin structure for expediting discharging process in latent heat thermal energy storage system containing nano-enhanced phase change material [J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67: 115–125. DOI: https://doi.org/10.1016/j.jtice.2016.08.019.

    Article  Google Scholar 

  34. KHODADADI J M, ZHANG Y. Effects of buoyancy-driven convection on melting within spherical containers [J]. International Journal of Heat and Mass Transfer, 2001, 44(8): 1605–1618. DOI: https://doi.org/10.1016/s0017-9310(00)00192-7.

    Article  Google Scholar 

  35. NABI H, GHOLINIA M, GANJI D D. Employing the (SWCNTs-MWCNTs)/H2O nanofluid and topology structures on the microchannel heatsink for energy storage: A thermal case study [J]. Case Studies in Thermal Engineering, 2023, 42: 102697. DOI: https://doi.org/10.1016/j.csite.2023.102697.

    Article  Google Scholar 

  36. GHOLIZADEH A, POURFALLAH M, GHOLINIA M, et al. The role of nanofluids and fins in a heat exchanger on waste energy recovery from a diesel engine: An experimental and numerical study [J]. Energy Reports, 2022, 8: 13353–13368. DOI: https://doi.org/10.1016/j.egyr.2022.10.009.

    Article  Google Scholar 

  37. ZHANG Bo, ZHAN Rui, LIU Lang, et al. Performance of a horizontal square-spiral-type backfill heat exchanger in a deep mine and its coupled heat pump system [J]. Chinese Journal of Engineering, 2022, 44(10): 1719–1732. DOI: https://doi.org/10.13374/j.issn2095-9389.2022.07.20.001.

    Google Scholar 

  38. GHADIKOLAEI S S, SIAHCHEHREHGHADIKOLAEI S, GHOLINIA M, et al. A CFD modeling of heat transfer between CGNPs/H2O Eco-friendly nanofluid and the novel nature-based designs heat sink: Hybrid passive techniques for CPU cooling [J]. Thermal Science and Engineering Progress, 2023, 37: 101604. DOI: https://doi.org/10.1016/j.tsep.2022.101604.

    Article  Google Scholar 

  39. THIANPONG C, YONGSIRI K, NANAN K, et al. Thermal performance evaluation of heat exchangers fitted with twisted-ring turbulators [J]. International Communications in Heat and Mass Transfer, 2012, 39(6): 861–868. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2012.04.004.

    Article  Google Scholar 

  40. BUONOMO B, DI PASQUA A, MANCA O, et al. Evaluation of thermal and fluid dynamic performance parameters in aluminum foam compact heat exchangers [J]. Applied Thermal Engineering, 2020, 176: 115456. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115456.

    Article  Google Scholar 

  41. WU Jiang-hong, FENG Ye, LIU Chao-peng, et al. Heat transfer characteristics of an expanded graphite/paraffin PCM-heat exchanger used in an instantaneous heat pump water heater [J]. Applied Thermal Engineering, 2018, 142: 644–655. DOI: https://doi.org/10.1016/j.applthermaleng.2018.06.087.

    Article  Google Scholar 

  42. JAVADI H, MOUSAVI AJAROSTAGHI S S, ROSEN M A, et al. Performance of ground heat exchangers: A comprehensive review of recent advances [J]. Energy, 2019, 178: 207–233. DOI: https://doi.org/10.1016/j.energy.2019.04.094.

    Article  Google Scholar 

  43. SIAHCHEHREHGHADIKOLAEI S, GHOLINIA M, GHADIKOLAEI S S, et al. A CFD modeling of CPU cooling by eco-friendly nanofluid and fin heat sink passive cooling techniques [J]. Advanced Powder Technology, 2022, 33(11): 103813. DOI: https://doi.org/10.1016/j.apt.2022.103813.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lang Liu  (刘浪).

Additional information

Foundation item: Projects(51974225, 52274063, 52304154, 52104148) supported by the National Natural Science Foundation of China; Project(2022JQ-401) supported by the Natural Science Basic Research Program of Shaanxi Province of China; Project (21JP077) supported by Scientific Research Project of Youth Innovation Team Construction of Shaanxi Provincial Department of Education

Contributors

ZHANG Xiao-yan: Writing-review & editing. DU Qiang-qiang: Writing original draft, Results analysis. LIU Lang: Conceptualization, methodology. XU Mu-yan: Supervision, Data Curation. KE Ya-ping: Supervision, Data Curation. WANG Xue-li: Review & Editing.

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of the article titled “Study on the thermal and pressure performance of heat collection tube group in the backfill body added with phase change material”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xy., Du, Qq., Liu, L. et al. Thermal and pressure performance of heat collection tube group in backfill body added with phase change material. J. Cent. South Univ. 31, 649–669 (2024). https://doi.org/10.1007/s11771-024-5588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5588-5

Key words

关键词

Navigation