Skip to main content
Log in

Acid corrosion micro-macro mechanism of enzyme-induced carbonate precipitation (EICP) treated sandy soils

酶诱导碳酸钙沉淀(EICP)固化砂土酸蚀宏细观机理

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2) geological sequestration is an effective way to control CO2 emissions, and the geological safety in CO2 injection project is the most concern problem. Enzyme-induced carbonate precipitation (EICP) technique is believed as useful to overcome CO2 leakage problem, but its main cementation matter, calcium carbonate, may be corroded by acidic CO2 solution. Therefore, laboratory studies are necessary to investigate the acid corrosion and resistance of EICP treated sandy soils. In this study, the EICP specimens were immersed in acid solutions with different concentrations, and both mechanical strength and micro-macro structure were investigated based on mass loss, apparent analysis, unconfined compressive strength tests, SEM and XCT. The results indicate that the corrosive effect of acid solution on EICP specimens was obviously strengthened by the decrease in solution pH, the ablation of calcium carbonate destroyed the cementation-pore structure resulting in the gradual shedding of the outer layer of the specimens and the nearly linear decrease in unconfined compressive strength. After acid corrosion reaction, the EICP specimens were found with a large number of intergranular pores among calcium carbonate particles. This study reveals the evolution mechanism of acid corrosion of EICP specimens, providing a reference for the corrosion resistance of EICP.

摘要

二氧化碳地质封存是控制二氧化碳排放的有效措施,因此二氧化碳注入后地质安全问题备受关 注。当前,酶诱导碳酸钙沉淀(EICP)技术能够有效地解决二氧化碳泄露问题。二氧化碳注入后储层流 体呈酸性,对胶结物碳酸钙具有酸蚀作用。因此,亟需对EICP固化砂土耐酸蚀性开展试验研究。本研 究将EICP 试样浸泡在不同浓度酸溶液中,通过质量损失、表观分析、无侧限抗压强度、SEM和XCT 等对其力学强度和宏细观结构进行了研究。结果表明:酸溶液对EICP 试样的腐蚀作用随着溶液pH的 降低明显增强,并且碳酸钙胶结物酸蚀导致试样结构破坏,试样外层逐渐脱落,从而使试样无侧限抗 压强度近似线性下降。同时,酸蚀反应后EICP 试样出现大量粒间孔隙。本研究揭示了EICP 试样酸蚀 演化机理,为EICP耐腐蚀性提供参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. LACKNER K S. A guide to CO2 sequestration [J]. Science, 2003, 300(5626): 1677–1678. DOI: https://doi.org/10.1126/science.1079033.

    Article  Google Scholar 

  2. BACHU S, BONIJOLY D, BRADSHAWB J, et al. CO2 storage capacity estimation: Methodology and gaps [J]. International Journal of Greenhouse Gas Control, 2007, 1(4): 430–443. DOI: https://doi.org/10.1016/S1750-5836(07)00086-2.

    Article  Google Scholar 

  3. BICKLE M J. Geological carbon storage [J]. Nature Geoscience, 2009, 2(12): 815–818. DOI: https://doi.org/10.1038/ngeo687.

    Article  Google Scholar 

  4. SHUKLA R, RANJITH P, HAQUE A, et al. A review of studies on CO2 sequestration and caprock integrity [J]. Fuel, 2010, 89(10): 2651–2664. DOI: https://doi.org/10.1016/j.fuel.2010.05.012.

    Article  Google Scholar 

  5. CAREY J W, SVEC R, GRIGG R, et al. Experimental investigation of wellbore integrity and CO2-brine flow along the casing-cement microannulus [J]. International Journal of Greenhouse Gas Control, 2010, 4(2): 272–282. DOI: https://doi.org/10.1016/j.ijggc.2009.09.018.

    Article  Google Scholar 

  6. PHILLIPS A J, TROYER E, HIEBERT R, et al. Enhancing wellbore cement integrity with microbially induced calcite precipitation (MICP): A field scale demonstration [J]. Journal of Petroleum Science and Engineering, 2018, 171: 1141–1148. DOI: https://doi.org/10.1016/j.petrol.2018.08.012.

    Article  Google Scholar 

  7. PHILLIPS A J, CUNNINGHAM A B, GERLACH R, et al. Fracture sealing with microbially-induced calcium carbonate precipitation: A field study [J]. Environmental Science & Technology, 2016, 50(7): 4111–4117. DOI: https://doi.org/10.1021/acs.est.5b05559.

    Article  Google Scholar 

  8. PHILLIPS A J, LAUCHNORL E, ELDRING J, et al. Potential CO2 leakage reduction through biofilm-induced calcium carbonate precipitation [J]. Environmental Science & Technology, 2013, 47(1): 142–149. DOI: https://doi.org/10.1021/es301294q.

    Article  Google Scholar 

  9. HE Jia, YANG Feng, QI Yong-shuai, et al. Improvement in silty sand with enzyme-induced carbonate precipitation: Laboratory model experiment [J]. Acta Geotechnica, 2022, 17: 2895–2905. DOI: https://doi.org/10.1007/s11440-021-01361-z.

    Article  Google Scholar 

  10. MENG Hao, SHU Shuang, GAO Yu-feng, et al. Multiple-phase enzyme-induced carbonate precipitation (EICP) method for soil improvement [J]. Engineering Geology, 2021, 294: 106374. DOI: https://doi.org/10.1016/j.enggeo.2021.106374.

    Article  Google Scholar 

  11. KAVAZANJIAN E J, HAMDAN N. Enzyme-induced carbonate mineral precipitation for fugitive dust control [J]. Geotechnique, 2016, 66(7): 546–555. DOI: https://doi.org/10.1680/jgeot.15.P.168.

    Article  Google Scholar 

  12. CUI Ming-Juan, LAI Han-Jiang, HOANG Tung, et al. One-phase-low-pH enzyme induced carbonate precipitation (EICP) method for soil improvement [J]. Acta Geotechnica, 2021, 16: 481–489. DOI: https://doi.org/10.1007/s11440-020-01043-2.

    Article  Google Scholar 

  13. MENG Hao, GAO Yu-feng, HE Jia, et al. Microbially induced carbonate precipitation for wind erosion control of desert soil: Field-scale tests [J]. Geoderma, 2021, 383: 114723. DOI: https://doi.org/10.1016/j.geoderma.2020.114723.

    Article  Google Scholar 

  14. LI Shuang-hu, LI Chi, YAO De, et al. Feasibility of microbially induced carbonate precipitation and straw checkerboard barriers on desertification control and ecological restoration [J]. Ecological Engineering, 2020, 152: 105883. DOI: https://doi.org/10.1016/j.ecoleng.2020.105883.

    Article  Google Scholar 

  15. LIU Peng, CHENG Yu, CHEN Long, et al. Application of microbial mineralization in the treatment of sintering red mud [J]. Journal of Central South University, 2023, 30(9): 3057–3068. DOI: https://doi.org/10.1007/s11771-023-5381-x.

    Article  Google Scholar 

  16. HAMDAN N, KAVAZANJIAN E, O’DONNELL S. Carbonate cementation via plant derived urease [C]//Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering. Paris, France, 2013. https://www.issmge.org/uploads/publications/1/2/2489-2492.pdf.

  17. NEMAT M, VOORDOUW G. Modification of porous media permeability, using calcium carbonate produced enzymatically in situ [J]. Enzyme and Microbial Technology, 2003, 33: 635–642. DOI: https://doi.org/10.1016/S0141-0229(03)00191-1.

    Article  Google Scholar 

  18. YASUHARA H, NEUPANE D, HAYASHI, K, et al. Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation [J]. Soils and Foundations, 2012, 52(3): 539–549. DOI: https://doi.org/10.1016/j.sandf.2012.05.011.

    Article  Google Scholar 

  19. HAMDAN N, ZHI Z, MUJICA M, et al. Hydrogel-assisted enzyme induced carbonate mineral precipitation [J]. Journal of Materials in Civil Engineering, 2016, 28(10): 04016089(1-9. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001604.

    Article  Google Scholar 

  20. TRAUTZ R C, PUGH J D, VARADHARAJAN C. Effect of dissolved CO2 on a shallow groundwater system: A controlled release field experiment [J]. Environment Science & Technology, 2013, 47(1): 298–305. DOI: https://doi.org/10.1021/es301280t.

    Article  Google Scholar 

  21. ALIQUES G J, TOGNONVI T M, TAGNIT H A. Durability test methods and their application to AAMs: Case of sulfuric-acid resistance [J]. Materials and Structure, 2017, 50(1): 1693–1703. DOI: https://doi.org/10.1617/s11527-016-0904-7.

    Google Scholar 

  22. CHENG Liang, RALF C R, SHAHIN M A. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation [J]. Canadian Geotechnical Journal, 2013, 50(1): 81–90. https://doi.org/10.1139/cgj-2012-0023.

    Article  Google Scholar 

  23. LI Chi, WANG Yan-xin, ZHOU Tuan-jie, et al. Sulfate acid corrosion mechanism of biogeomaterial based on MICP technology [J]. Journal of Materials in Civil Engineering, 2019, 31(7): 04019097.1-04019097.11. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002695.

    Article  Google Scholar 

  24. LI Chi, BAI S, ZHOU Tuan-jie, et al. Strength-increase mechanism and microstructural characteristics of a biotreated geomaterial [J]. Frontiers of Structural and Civil Engineering, 2020, 14: 599–608. DOI: https://doi.org/10.1007/s11709-020-0606-7.

    Article  Google Scholar 

  25. LIU Shi-hui, WEN Ke-jun, ARMWOOD C, et al. Enhancement of MICP-Treated sandy soils against environmental deterioration [J]. Journal of Materials in Civil Engineerin, 2019, 31(12): 04019294.1–04019294.13. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002959.

    Google Scholar 

  26. GOWTHAMAN S, NAKASHIMA K, KAWASAKI S. Durability analysis of bio-cemented slope soil under the exposure of acid rain [J]. Journal of Soils and Sediments, 2021, 21(8): 2831–2844. DOI: https://doi.org/10.1007/s11368-021-02997-w.

    Article  Google Scholar 

  27. CHEN X, ACHAL V. Effect of simulated acid rain on the stability of calcium carbonate immobilized by microbial carbonate precipitation [J]. Journal of Environmental Management, 2020, 264: 110419. DOI: https://doi.org/10.1016/j.jenvman.2020.110419.

    Article  Google Scholar 

  28. WEI Mu-wang, XIE Jian-he, ZHANG Huan, et al. Bond-slip behaviors of BFRP to wet/dry cycles in chloride environment [J]. Composite Structures, 2019, 219: 185–193. DOI: https://doi.org/10.1016/j.compstruct.2019.03.049.

    Article  Google Scholar 

  29. ALMAJED A, ABBAS H, ARAB M, et al. Enzyme-induced carbonate precipitation (EICP) -based methods for ecofriendly stabilization of different types of natural sands [J]. Journal of Cleaner Production, 2020, 274: 122627. DOI: https://doi.org/10.1016/j.jclepro.2020.122627.

    Article  Google Scholar 

  30. LI Yu-jie, GUO Zhen, WANG Li-zhong, et al. Shear resistance of MICP cementing material at the Interface between calcareous sand and steel [J]. Materials Letters, 2020, 274: 128009. DOI: https://doi.org/10.1016/j.matlet.2020.128009.

    Article  Google Scholar 

  31. KHARAKA Y K, COLE D R, HOVORKA S D, et al. Gas-water-rock interactions in Frio Formation following CO2 injection: Implications for the storage of greenhouse gases in sedimentary basins [J]. Geology, 2006, 34(7): 577–580. DOI: https://doi.org/10.1130/G22357.1.

    Article  Google Scholar 

  32. XU Tian-fu, APPS J A, PRUESS K, et al. Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation [J]. Chemical Geology, 2007, 242: 319–346. DOI: https://doi.org/10.1016/j.chemgeo.2007.03.022.

    Article  Google Scholar 

  33. LIU Shi-hui, KANG Ke-jun, WEN Wei, et al. Sandy soil improvement through microbially induced calcite precipitation (MICP) by immersion [J]. Journal of Visualized Experiments, 2019, 151: e60059. DOI: https://doi.org/10.3791/60059.

    Google Scholar 

  34. MORTENSEN B M, HABER M J, DEJONG J T. Effects of environmental factors on microbial induced calcium carbonate precipitation [J]. Journal of Applied Microbiology, 2011, 111(2): 338–349. DOI: https://doi.org/10.1111/j.1365-2672.2011.05065.x.

    Article  Google Scholar 

  35. PENG Yu, ZHANG Zhi-heng, AN Ting, et al. Principle and practice of conductive epoxy resin to eliminate charging problem in scanning electron microscope images [J]. Analysis and Testing Technology and Instruments, 2022, 28(2): 125–131. DOI: https://doi.org/10.16495/j.1006-3757.2022.02.003. (in Chinese)

    Google Scholar 

  36. WONG H S, HEAD M K, BUENFELD N R. Pore segmentation of cement-based materials from backscattered electron images [J]. Cement and Concrete Research, 2006, 36(6): 1083–1090. DOI: https://doi.org/10.1016/j.cemconres.2005.10.006.

    Article  Google Scholar 

  37. BLAKE O O, FAULKNER D R, WORDEN R H, et al. Effect of thermal shock on the permeability and seismic wave velocity of the caprock and reservoir during CO2 injection [J]. International Journal of Greenhouse Gas Control, 2022, 118: 103691. DOI: https://doi.org/10.1016/j.ijggc.2022.103691.

    Article  Google Scholar 

  38. JUANG C H, HOLTZ R D. A probabilistic permeability model and the pore size density function [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1986, 10: 543–553. DOI: https://doi.org/10.1002/nag.1610100506.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-nan Zheng  (郑嘉男).

Additional information

Foundation item: Projects(52122906, 52306205) supported by the National Natural Science Foundation of China; Project (LHZ20E090001) supported by the Natural Science Foundation of Zhejiang Province, China

Contributors

YANG Xin developed the overarching research goals and wrote the draft of manuscript. YAN Meng-qiu conducted the literature review. ZHENG Jia-nan edited the manuscript.

Conflict of interest

YANG Xin, YAN Meng-qiu, and ZHENG Jia-nan declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yan, Mq. & Zheng, Jn. Acid corrosion micro-macro mechanism of enzyme-induced carbonate precipitation (EICP) treated sandy soils. J. Cent. South Univ. 31, 636–648 (2024). https://doi.org/10.1007/s11771-024-5585-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-024-5585-8

Key words

关键词

Navigation