Skip to main content
Log in

Effect of solid solution treatment on microstructure and properties of extruded 7055 aluminum alloy

固溶处理对7055铝合金微观组织和性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The effect of solid solution parameter and quenching cooling rate on the microstructure and properties of the 7055 aluminum alloy was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and hardness, electrical conductivity, immersion corrosion test methods. The results show that there is obvious coarse phase aggregation in the as-extruded alloy, with an area fraction of 23.8%; after single-stage solid solution at 450 °C/1 h, the coarse phase redissolves obviously, with an area fraction of 7.6%; the coarse phase is further reduced after the double-stage solution at 450 °C/1 h+475 °C/1 h, and the area fraction is reduced to 4.3%. When the second stage solution temperature is increased to 490 °C, the alloy is overburnt. The hardness and electrical conductivity of the alloy decrease after different solid solution treatments, and then increase significantly after aging treatment at 160 °/6 h. The quenching cooling rate has a significant effect on exsolution and corrosion resistance. The alloys with cooling rates of less than 30 °C/min have obvious exsolution of η phase and S phase, which reduce the driving force of subsequent aging precipitation. The quenching sensitive temperature range of the alloy is around 375–200 °C, and the exsolution during cooling can be significantly suppressed by passing through the quenching sensitive temperature range with cooling rates of not less than 60 °/min.

摘要

利用扫描电镜(SEM)、透射电镜(TEM)、差示扫描量热法(DSC)、硬度和导电率检测、浸泡腐蚀实验研究了固溶参数和淬火冷却速率对7055 铝合金微观组织和性能的影响。研究结果显示原始态合金中存在明显的粗大未溶相,其面积分数为23.8%。经过450 ℃/1 h 单级固溶后粗大未溶相的面积分数降低至7.6%。经过450 ℃/1 h+475 ℃/1 h 双级固溶,未溶相的面积分数进一步降低至4.3%,当第二级固溶温度升高至490 ℃时发生过烧。合金的硬度和导电率在固溶处理后均有所下降,之后经过160 ℃/6 h时效后显著上升。淬火冷却速率对合金脱溶和耐腐蚀性能具有重要影响,当冷却速率小于30 ℃/min 时脱溶析出η 相和S 相,降低后续时效析出驱动力。合金的淬火敏感温度区间约为375~200 ℃,以不低于60 ℃/min 的冷却速率经过此温度区间可以显著抑制脱溶析出。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. HEINZ A, HASZLER A, KEIDEL C, et al. Recent development in aluminium alloys for aerospace applications [J]. Materials Science and Engineering A, 2000, 280(1): 102–107. DOI: https://doi.org/10.1016/S0921-5093(99)00674-7.

    Article  Google Scholar 

  2. ZOU Yan, WU Xiao-dong, TANG Song-bai, et al. Investigation on microstructure and mechanical properties of Al−Zn−Mg−Cu alloys with various Zn/Mg ratios [J]. Journal of Materials Science & Technology, 2021, 85: 106–117. DOI: https://doi.org/10.1016/j.jmst.2020.12.045.

    Article  CAS  Google Scholar 

  3. AZARNIYA A, TAHERI A K, TAHERI K K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective [J]. Journal of Alloys and Compounds, 2019, 781: 945–983. DOI: https://doi.org/10.1016/j.jallcom.2018.11.286.

    Article  CAS  Google Scholar 

  4. JI Cheng-wei, MA Ai-bin, JIANG Jing-hua. Mechanical properties and corrosion behavior of novel Al−Mg−Zn−Cu−Si lightweight high entropy alloys [J]. Journal of Alloys and Compounds, 2022, 900: 163508. DOI: https://doi.org/10.1016/j.jallcom.2021.163508.

    Article  CAS  Google Scholar 

  5. LI Jun, HE Ya-yun, ZHAO Xi, et al. Evolution of microstructure and mechanical properties of Al−Zn−Mg−Cu alloy by extrusion and heat treatment [J]. Coatings, 2022, 12(6): 787. DOI: https://doi.org/10.3390/coatings12060787.

    Article  CAS  Google Scholar 

  6. PENG Xiao-yan, LI Yao, GUO Qi, et al. Effects of enhanced solution treatment on stress corrosion behavior of Al−Zn−Mg−Cu alloy [J]. JOM, 2018, 70(11): 2692–2697. DOI: https://doi.org/10.1007/s11837-018-2737-z.

    Article  CAS  Google Scholar 

  7. WANG Wei-yi, PAN Qing-lin, WANG Xiang-dong, et al. Non-isothermal aging: A heat treatment method that simultaneously improves the mechanical properties and corrosion resistance of ultra-high strength Al−Zn−Mg−Cu alloy [J]. Journal of Alloys and Compounds, 2020, 845: 156286. DOI: https://doi.org/10.1016/j.jallcom.2020.156286.

    Article  CAS  Google Scholar 

  8. KAYANI S H, PARK S, EUH K, et al. Dislocation-aided electrochemical behavior of precipitates in stress corrosion cracking of Al−Zn−Mg−Cu alloys [J]. Materials Characterization, 2022, 190: 112019. DOI: https://doi.org/10.1016/j.matchar.2022.112019.

    Article  CAS  Google Scholar 

  9. ABOLIKHINA O V, ZNOVA V A, SEMENETS O I, et al. Influence of the microstructure of alloys of the Al−Zn−Mg−Cu system on the mechanism of fracture of aircraft structures [J]. Materials Science, 2021, 57(1): 17–26. DOI: https://doi.org/10.1007/s11003-021-00509-2.

    Article  CAS  Google Scholar 

  10. ZOHRABYAN D, MILKEREIT B, SCHICK C, et al. Continuous cooling precipitation diagram of high alloyed Al−Zn−Mg−Cu 7049A alloy [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2018–2024. DOI: https://doi.org/10.1016/S1003-6326(14)63307-0.

    Article  CAS  Google Scholar 

  11. STARINK M J, MILKEREIT B, ZHANG Yong, et al. Predicting the quench sensitivity of Al−Zn−Mg−Cu alloys: A model for linear cooling and strengthening [J]. Materials & Design, 2015, 88: 958–971. DOI: https://doi.org/10.1016/j.matdes.2015.09.058.

    Article  CAS  Google Scholar 

  12. MOON C, THUILLIER S, LEE J, et al. Mechanical properties of solution heat treated Al−Zn−Mg−Cu (7075) alloy under different cooling conditions: Analysis with full field measurement and finite element modeling [J]. Journal of Alloys and Compounds, 2021, 856: 158180. DOI: https://doi.org/10.1016/j.jallcom.2020.158180.

    Article  CAS  Google Scholar 

  13. WANG Yi-chang, WU Xiao-dong, YUE Lu, et al. Aging precipitation behavior and properties of Al−Zn−Mg−Cu−Zr−Er alloy at different quenching rates [J]. Transactions of Nonferrous Metals Society of China, 2022, 32(4): 1070–1082. DOI: https://doi.org/10.1016/s1003-6326(22)65856-4.

    Article  CAS  Google Scholar 

  14. YE Ling-ying, YAO X, TANG J, et al. Effect of grain structure on stress corrosion resistance of Al−Zn−Mg alloy [J]. Journal of Central South University Technol (Science and Technology), 2019, 50(5): 1049–1055. DOI: https://doi.org/10.11817/j.issn.1672-7207.2019.05.006. (in Chinese)

    Google Scholar 

  15. XU D K, ROMETSCH P A, BIRBILIS N. Improved solution treatment for an as-rolled Al−Zn−Mg−Cu alloy. Part I. Characterisation of constituent particles and overheating [J]. Materials Science and Engineering A, 2012, 534: 234–243. DOI: https://doi.org/10.1016/j.msea.2011.11.065.

    Article  CAS  Google Scholar 

  16. PENG Nan-hui, ZHAN Li-hua, MA Bo-lin, et al. Creep aging behavior and performance of Al−Zn−Mg−Cu alloys under different parameters in retrogression aging treatment [J]. Journal of Central South University, 2022, 29(3): 986–998. DOI: https://doi.org/10.1007/s11771-022-4955-3.

    Article  CAS  Google Scholar 

  17. LUO Yun-tian, ZHUANG Yuan, LI Chen, et al. Effects of Cu and Ti contents on microstructure and properties of Al−8.8Zn−2.2Mg−xCu−0.2Zr−0.1Sr−yTi aluminum alloy [J]. Journal of Materials Engineering and Performance, 2022, 31(6): 4495–4506. DOI: https://doi.org/10.1007/s11665-021-06567-6.

    Article  ADS  CAS  Google Scholar 

  18. ZHANG Shuai, CHEN Gao-qiang, QU Ti-ming, et al. A novel aluminum-carbon nanotubes nanocomposite with doubled strength and preserved electrical conductivity [J]. Nano Research, 2021, 14(8): 2776–2782. DOI: https://doi.org/10.1007/s12274-021-3284-4.

    Article  ADS  CAS  Google Scholar 

  19. KUMAR A, CHAUDHARI G P, NATH S K. Correlation of microstructure with corrosion performance in high zinc 7068 aluminum alloy aged using different T6 conditions [J]. Materials Characterization, 2022, 191: 112133. DOI: https://doi.org/10.1016/j.matchar.2022.112133.

    Article  CAS  Google Scholar 

  20. WEN Kai, LIU Hong-wei. Fatigue crack growth and precipitation characteristics of a high Zn-containing Al−Zn−Mg−Cu alloy with various typical aging states [J]. Materials Science Forum, 2021, 1026: 19–27. DOI: https://doi.org/10.4028/www.scientific.net/msf.1026.19.

    Article  Google Scholar 

  21. DAI Yu-xin, YAN Liang-ming, HAO Jian-peng. Microstructure and intermetallic phase evolution during the homogenization of an Al−Zn−Mg−Cu−Zr−Nd aluminum alloy [J]. Advanced Engineering Materials, 2023, 25(6): 1288. DOI: https://doi.org/10.1002/adem.202201288.

    Article  Google Scholar 

  22. HUANG Ren-song, LI Meng-nie, YANG Hong-fu, et al. Effects of Mg contents on microstructures and second phases of as-cast Al−Zn−Mg−Cu alloys [J]. Journal of Materials Research and Technology, 2022, 21: 2105–2117. DOI: https://doi.org/10.1016/j.jmrt.2022.10.050.

    Article  ADS  CAS  Google Scholar 

  23. WANG Wei-yi, PAN Qing-lin, WANG Xiang-dong, et al. Mechanical properties and microstructure evolution of ultrahigh strength Al−Zn−Mg−Cu alloy processed by room temperature ECAP with post aging [J]. Materials Science and Engineering A, 2018, 731: 195–208. DOI: https://doi.org/10.1016/j.msea.2018.06.047.

    Article  CAS  Google Scholar 

  24. YU Xin-xiang, SUN Jie, LI Zhu-tie, et al. Solidification behavior and elimination of undissolved Al2CuMg phase during homogenization in Ce-modified Al−Zn−Mg−Cu alloy [J]. Rare Metals, 2020, 39(11): 1279–1287. DOI: https://doi.org/10.1007/s12598-018-1172-1.

    Article  CAS  Google Scholar 

  25. PORTER D A, EASTERLING K E. Phase transformations in metals and alloys [M]. London: Chapman & Hall, 1992.

    Book  Google Scholar 

  26. LIU Sheng-dan, LI Cheng-bo, DENG Yun-lai, et al. Precipitation behavior in Al−Zn−Mg−Cu alloy after direct quenching [J]. Metals and Materials International, 2014, 20(2): 195–200. DOI: https://doi.org/10.1007/s12540-014-2001-1.

    Article  ADS  CAS  Google Scholar 

  27. MOKSHIN A V, GALIMZYANOV B N, BARRAT J L. Extension of classical nucleation theory for uniformly sheared systems [J]. Physical Review E, 2013, 87(6): 062307. DOI: https://doi.org/10.1103/physreve.87.062307.

    Article  ADS  Google Scholar 

  28. FAN Zhong-yun, MEN Hua, WANG Yun, et al. A new atomistic mechanism for heterogeneous nucleation in the systems with negative lattice misfit: Creating a 2D template for crystal growth [J]. Metals, 2021, 11(3): 478. DOI: https://doi.org/10.3390/met11030478.

    Article  CAS  Google Scholar 

  29. ZHAO Bi-wei, XING Shu-ming, SUN Hong-ji, et al. Effect of rare-earth La on microstructure and mechanical properties of Al7Si4CuMg alloys prepared by squeeze casting [J]. Journal of Materials Science, 2022, 57(25): 12064–12083. DOI: https://doi.org/10.1007/s10853-022-07358-7.

    Article  ADS  CAS  Google Scholar 

  30. THRONSEN E, FRAFJORD J, FRIIS J, et al. Studying GPI zones in Al−Zn−Mg alloys by 4D-STEM [J]. Materials Characterization, 2022, 185: 111675. DOI: https://doi.org/10.1016/j.matchar.2021.111675.

    Article  CAS  Google Scholar 

  31. SHAH S, THRONSEN E, HATZOGLOU C, et al. Effect of cyclic ageing on the early-stage clustering in Al−Zn−Mg (−Cu) alloys [J]. Materials Science and Engineering A, 2022, 846: 143280. DOI: https://doi.org/10.1016/j.msea.2022.143280.

    Article  CAS  Google Scholar 

  32. LEE S H, JUNG J G, BAIK S I, et al. Precipitation strengthening in naturally aged Al−Zn−Mg−Cu alloy [J]. Materials Science and Engineering A, 2021, 803: 140719. DOI: https://doi.org/10.1016/j.msea.2020.140719.

    Article  CAS  Google Scholar 

  33. ZHANG Xing-pu, DENG Xiao-tong, ZHOU Hao-fei, et al. Atomic-scale study on the precipitation behavior of an Al−Zn−Mg−Cu alloy during isochronal aging [J]. Journal of Materials Science & Technology, 2022, 108: 281–292. DOI: https://doi.org/10.1016/j.jmst.2021.08.039.

    Article  CAS  Google Scholar 

  34. MEDJAHED A, HENNICHE A, DERRADJI M, et al. Effects of Cu/Mg ratio on the microstructure, mechanical and corrosion properties of Al−Li−Cu−Mg−X alloys [J]. Materials Science and Engineering A, 2018, 718: 241–249. DOI: https://doi.org/10.1016/j.msea.2018.01.118.

    Article  CAS  Google Scholar 

  35. ARZT E. Size effects in materials due to microstructural and dimensional constraints: A comparative review [J]. Acta Materialia, 1998, 46(16): 5611–5626. DOI: https://doi.org/10.1016/S1359-6454(98)00231-6.

    Article  ADS  CAS  Google Scholar 

  36. ZHU A W, CSONTOS A, STARKE E A. Computer experiment on superposition of strengthening effects of different particles [J]. Acta Materialia, 1999, 47(6): 1713–1721. DOI: https://doi.org/10.1016/S1359-6454(99)00077-4.

    Article  ADS  CAS  Google Scholar 

  37. NIE jian feng, MUDDLE B C, POLMEAR I J. The effect of precipitate shape and orientation on dispersion strengthening in high strength aluminium alloys [J]. Materials Science Forum, 1996, 217–222: 1257–1262. DOI: https://doi.org/10.4028/www.scientific.net/msf.217-222.1257.

    Article  Google Scholar 

  38. KE Bin, YE Ling-ying, ZHANG Yong, et al. Enhanced mechanical properties and corrosion resistance of an Al−Zn−Mg aluminum alloy through variable-rate non-isothermal aging [J]. Journal of Alloys and Compounds, 2022, 890: 161933. DOI: https://doi.org/10.1016/j.jallcom.2021.161933.

    Article  CAS  Google Scholar 

  39. KHANGHOLI S N, JAVIDANI M, MALTAIS A, et al. Review on recent progress in Al−Mg−Si 6xxx conductor alloys [J]. Journal of Materials Research, 2022, 37(3): 670–691. DOI: https://doi.org/10.1557/s43578-022-00488-3.

    Article  ADS  CAS  Google Scholar 

  40. TANG Jian-guo, CHEN Hui, ZHANG Xin-ming, et al. Influence of quench-induced precipitation on aging behavior of Al−Zn−Mg−Cu alloy [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(6): 1255–1263. DOI: https://doi.org/10.1016/s1003-6326(11)61313-7.

    Article  CAS  Google Scholar 

  41. ZHANG Yun-kang, XU Xiao-jing, LUO Yong, et al. Tensile property and exfoliation corrosion of 7075 aluminum alloy after enhanced-solid-solution and T76 aging treatment [J]. Rare Met Mater Eng, 2012, 41: 612–615.

    Google Scholar 

  42. YAN L M, DAI Y X, WANG W B, et al. Effect of pretreatment after solid solution treatment on the mechanical and corrosion properties of 7055 alloy plate [J]. Journal of Materials Engineering and Performance, 2023, 32(9): 4014–4021. DOI: https://doi.org/10.1007/s11665-022-07391-2.

    Article  ADS  CAS  Google Scholar 

  43. ZHOU Liang, CHEN Kang-hua, CHEN Song-yi, et al. Correlation between stress corrosion cracking resistance and grain-boundary precipitates of a new generation high Zn-containing 7056 aluminum alloy by non-isothermal aging and re-aging heat treatment [J]. Journal of Alloys and Compounds, 2021, 850: 156717. DOI: https://doi.org/10.1016/j.jallcom.2020.156717.

    Article  CAS  Google Scholar 

  44. WANG Qing-zhao, ZHAO Yong, YAN Keng, et al. Corrosion behavior of spray formed 7055 aluminum alloy joint welded by underwater friction stir welding [J]. Materials & Design, 2015, 68: 97–103. DOI: https://doi.org/10.1016/j.matdes.2014.12.019.

    Article  CAS  Google Scholar 

  45. WEI Li-jun, HAN Bao-shuai, YE Fan, et al. Influencing mechanisms of heat treatments on microstructure and comprehensive properties of Al−Zn−Mg−Cu alloy formed by spray forming [J]. Journal of Materials Research and Technology, 2020, 9(3): 6850–6858. DOI: https://doi.org/10.1016/j.jmrt.2020.03.121.

    Article  CAS  Google Scholar 

  46. LIU Sheng-dan, LI Cheng-bo, DENG Yun-lai, et al. Influence of grain structure on quench sensitivity relative to localized corrosion of high strength aluminum alloy [J]. Materials Chemistry and Physics, 2015, 167: 320–329. DOI: https://doi.org/10.1016/j.matchemphys.2015.10.051.

    Article  CAS  Google Scholar 

  47. YIN Yuan, LUO Bing-hui, JING Hui-bo, et al. Influences of quench cooling rate on microstructure and corrosion resistance of Al−Cu−Mg alloy based on the end-quenching test [J]. Metallurgical and Materials Transactions B, 2018, 49(5): 2241–2251. DOI: https://doi.org/10.1007/s11663-018-1329-1.

    Article  ADS  CAS  Google Scholar 

  48. JIANG Fu-qing, HUANG Ji-wu, JIANG Ying-ge, et al. Effects of quenching rate and over-aging on microstructures, mechanical properties and corrosion resistance of an Al−Zn−Mg (7046A) alloy [J]. Journal of Alloys and Compounds, 2021, 854: 157272. DOI: https://doi.org/10.1016/j.jallcom.2020.157272.

    Article  CAS  Google Scholar 

  49. ZHANG Zhao-gang, MA Xin-wu, ZHANG Cun-sheng, et al. Effect of stress-aging treatment on the mechanical and corrosion properties of Al−Zn−Mg−Cu alloy [J]. Materials Science and Engineering A, 2022, 838: 142791. DOI: https://doi.org/10.1016/j.msea.2022.142791.

    Article  CAS  Google Scholar 

  50. WANG Yin, LI Yong, YU Wei, et al. Effect of a special thermo-mechanical treatment process on microstructure and properties of 7185 alloy [J]. Journal of Alloys and Compounds, 2023, 935: 168072. DOI: https://doi.org/10.1016/j.jallcom.2022.168072.

    Article  CAS  Google Scholar 

  51. WANG Li-wei, LIANG Jian-ming, LI Han, et al. Quantitative study of the corrosion evolution and stress corrosion cracking of high strength aluminum alloys in solution and thin electrolyte layer containing Cl [J]. Corrosion Science, 2021, 178: 109076. DOI: https://doi.org/10.1016/j.corsci.2020.109076.

    Article  CAS  Google Scholar 

  52. ZHONG Hui-long, LI Sheng-ci, WU Jia-li, et al. Effects of retrogression and re-aging treatment on precipitation behavior, mechanical and corrosion properties of a Zr+Er modified Al−Zn−Mg−Cu alloy [J]. Materials Characterization, 2022, 183: 111617. DOI: https://doi.org/10.1016/j.matchar.2021.111617.

    Article  CAS  Google Scholar 

  53. LI Yong, LI Shi-ju, WEI Bo-wen, et al. Microstructural evolution and properties of electromagnetic cast-rolled novel Al−Li alloy under different heat treatment procedures [J]. Journal of Materials Research and Technology, 2022, 16: 864–878. DOI: https://doi.org/10.1016/j.jmrt.2021.12.036.

    Article  CAS  Google Scholar 

  54. LI Zhi, YI Dan-qing, TAN Cheng-yu, et al. Investigation of the stress corrosion cracking behavior in annealed 5083 aluminum alloy sheets with different texture types [J]. Journal of Alloys and Compounds, 2020, 817: 152690. DOI: https://doi.org/10.1016/j.jallcom.2019.152690.

    Article  CAS  Google Scholar 

  55. CHRISTODOULOU L, FLOWER H M. Hydrogen embrittlement and trapping in Al6%−Zn−3%−Mg [J]. Acta Metallurgica, 1980, 28(4): 481–487. DOI: https://doi.org/10.1016/0001-6160(80)90138-8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHAO Hui: Investigation, visualization, software, writing-original draft. YE Ling-ying: Conceptualization, methodology, supervision, writing-review & editing; CHENG Quan-shi: Validation, formal analysis; ZHAO Yan: Formal analysis, software; KANG Yuan: Data curation, software; ZHANG Wen-jing: Resources, project administration; All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Ling-ying Ye  (叶凌英).

Ethics declarations

ZHAO Hui, CHENG Quan-shi, ZHAO Yan, KANG Yuan, ZHANG Wen-jing and YE Ling-ying declare that they have no conflict of interest.

Additional information

Foundation item: Project(2022YFB3403700) supported by the National Key R&D Program of China; Project(2022DZX006) supported by the Science and Technology Special Fund Project of Qingyuan City, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Cheng, Qs., Zhao, Y. et al. Effect of solid solution treatment on microstructure and properties of extruded 7055 aluminum alloy. J. Cent. South Univ. 31, 25–42 (2024). https://doi.org/10.1007/s11771-023-5525-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5525-z

Key words

关键词

Navigation