Skip to main content
Log in

A time-varying boundary method for multimodal vibration suppression of beam

抑制多模态梁振动的时变边界方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

As common components in huge underwater gliders, modal vibrations of flexible beams can affect the durability of structures and the precision of system. The current methods for suppressing the beam vibrations include the damping suppression, active control and absorbers, etc. The above control methods were gradually developed for the low frequencies and wide band. The accurate structures and excitation parameters should be obtained in the design processing. In this work, a time-varying boundary method is proposed based on the energy transfer phenomenon of time-varying boundary structure. The proposed method is effective for suppressing multi-order structure resonance simultaneously. A dynamic model of a time-varying boundary beam is established. The vibrations of time-varying boundary beam are obtained by a time-domain piecewise analytical method, which are compared with those from a finite element software. The vibrations of time-varying boundary beams and time-invariant beams are compared. The vibration suppression effect of time-varying boundary method is verified. The effects of the damping, time-varying range and time-varying speed on the vibration suppression characteristics are analyzed. The time-varying position optimization area is obtained. Note that the time-varying boundary method can simultaneously suppress the multimodal resonances of beam and reduce the resonance peaks with the highest energy.

摘要

柔性梁结构是水下航行器的常见部件, 其模态振动传递会损害部件服役寿命和系统工作精度。常见的抑制梁振动的方法有吸振、阻尼和主动控制等。控制的难点在于低频抑振和拓宽有效抑制频带。而常见的抑振方法的应用需要获取准确的结构参数和激励参数, 对于非完备参数条件系统的适用性不足。本文基于时变边界结构的能量传递特性, 提出了一种针对模态振动抑制的时变边界方法。该方法可同时抑制多阶共振, 而不必针对每阶振动特性进行额外设计。首先, 建立时变边界梁的动力学模型, 采用时域分段解析法计算时变边界梁的瞬态振动, 并与有限元法的结果进行对比验证了该方法的正确性。然后, 通过时变边界梁和固定边界梁的结果对比验证了时变边界方法对共振的抑制效果。最后, 分析初始条件、阻尼、时变范围和时变频率等参数对时变边界方法抑振效果的影响, 发现阻尼可消耗由模态振动分散至其他频域的能量, 时变边界所对应的谐振频率变化范围越大时, 对共振峰值的抑振性能越好, 并由此得到了时变位置优化区域。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. WEI Lai, SUN Yi, ZENG Jing, et al. Experimental and numerical investigation of fatigue failure for metro bogie cowcatchers due to modal vibration and stress induced by rail corrugation [J]. Engineering Failure Analysis, 2022, 142: 106810. DOI: https://doi.org/10.1016/j.engfailanal.2022.106810.

    Article  Google Scholar 

  2. TANG Xue-yang, CAI Xiao-pei, PENG Hua, et al. Experimental and simulation investigation into the cause and treatment of rail corrugation for metro [J]. Journal of Central South University, 2022, 29(12): 3925–3938. DOI: https://doi.org/10.1007/s11771-022-5179-2.

    Article  Google Scholar 

  3. LIU Shao-hui, JIANG Li-zhong, ZHOU Wang-bao, et al. Influence of mortar gap on natural vibration frequencies of high-speed railway track-bridge system [J]. Journal of Central South University, 2022, 29(8): 2807–2819. DOI: https://doi.org/10.1007/s11771-022-5121-7.

    Article  Google Scholar 

  4. GAO Guang-yun, ZHONG Wen, MENG Yuan, et al. Microvibration test and numerical simulation analysis of precision instrument workshop [J]. Journal of Engineering Geology, 2020, 28(5): 1076–1083. DOI: https://doi.org/10.13544/j.cnki.jeg.2020-376.

    Google Scholar 

  5. HAN Yan, LIU Ye, CAI Chun-sheng, et al. Effects of sudden change in wind loads on running performance of trains on a highway-railway one-story bridge in crosswinds [J]. Journal of Central South University, 2022, 29(8): 2621–2638. DOI: https://doi.org/10.1007/s11771-022-5095-5.

    Article  Google Scholar 

  6. WANG Peng-fei, YANG Yang, XU Hong-yang, et al. Effect of static and dynamic misalignment of rolling bearing on nonlinear vibration characteristics of rotor system [J]. Journal of Central South University, 2023, 30(3): 871–903. DOI: https://doi.org/10.1007/s11771-023-5268-x.

    Article  Google Scholar 

  7. LIU Jing, NI Heng-tai, ZHOU Ru-yi, et al. A simulation analysis of ball bearing lubrication characteristics considering the cage clearance [J]. Journal of Tribology, 2023, 145(4): 044301. DOI: https://doi.org/10.1115/1.4056358.

    Article  Google Scholar 

  8. LIU Jing, LI Xin-bin, XIA Min. A dynamic model for the planetary bearings in a double planetary gear set [J]. Mechanical Systems and Signal Processing, 2023, 194: 110257. DOI: https://doi.org/10.1016/j.ymssp.2023.110257.

    Article  Google Scholar 

  9. MAO Jian-feng, XIAO Yuan-jie, YU Zhi-wu, et al. Probabilistic model and analysis of coupled train-ballasted track-subgrade system with uncertain structural parameters [J]. Journal of Central South University, 2021, 28(7): 2238–2256. DOI: https://doi.org/10.1007/s11771-021-4765-z.

    Article  Google Scholar 

  10. WU Zhao-zhi, ZHANG Nan. Response of train-bridge system under intensive seismic excitation by random vibration method [J]. Journal of Central South University, 2022, 29(8): 2467–2484. DOI: https://doi.org/10.1007/s11771-022-5106-6.

    Article  Google Scholar 

  11. LIAN Jing, DING Xuan-ming, ZHANG Liang. Shaking table test on seismic response of an accumulation landslide reinforced by pile-plate retaining wall based on the time-frequency analysis method [J]. Journal of Central South University, 2023, 30(5): 1710–1721. DOI: https://doi.org/10.1007/s11771-023-5323-7.

    Article  Google Scholar 

  12. GUO Wei, CHEN Xue-yuan, YE Yi-tao, et al. Coupling vibration analysis of high-speed maglev train-viaduct systems with control loop failure [J]. Journal of Central South University, 2022, 29(8): 2771–2790. DOI: https://doi.org/10.1007/s11771-022-5119-1.

    Article  Google Scholar 

  13. MORAD A M, KAMEL M, KHALIL M K. Vibration damping of aircraft propeller blades using shunted piezoelectric transducers [J]. IOP Conference Series: Materials Science and Engineering, 2021, 1172(1): 012007. DOI: https://doi.org/10.1088/1757-899x/1172/1/012007.

    Article  Google Scholar 

  14. EISA A I A, LI Shu-sen, ZHANG Yan, et al. Transient analysis method of an axially magnetized novel passive eddy current damper for suppressing lateral vibrations [J]. Mathematical Problems in Engineering, 2022: 38008992. DOI: https://doi.org/10.1155/2022/3808992.

  15. CHEN Yu-gang, ZHU Qing-yu, ZHAI Jing-yu. Experimental investigation on fatigue of blade specimen subjected to resonance and effect of a damping hard coating treatment [J]. Journal of Central South University, 2021, 28(2): 445–453. DOI: https://doi.org/10.1007/s11771-021-4614-0.

    Article  Google Scholar 

  16. JU Bin, GUO Zhi-hua, LIU Yong-bin, et al. Self-sensing vibration suppression of piezoelectric cantilever beam based on improved mirror circuit [J]. IEEE Access, 2019, 7: 148381–148392. DOI: https://doi.org/10.1109/ACCESS.2019.2946722.

    Article  Google Scholar 

  17. WEN Gui-lin, HE Jun-feng, LIU Jie, et al. Design, analysis and semi-active control of a quasi-zero stiffness vibration isolation system with six oblique springs [J]. Nonlinear Dynamics, 2021, 106(1): 309–321. DOI: https://doi.org/10.1007/s11071-021-06835-z.

    Article  Google Scholar 

  18. ZHANG Ye-wei, HOU Shuai, ZHANG Zhong, et al. Nonlinear vibration absorption of laminated composite beams in complex environment [J]. Nonlinear Dynamics, 2020, 99(4): 2605–2622. DOI: https://doi.org/10.1007/s11071-019-05442-3.

    Article  Google Scholar 

  19. QIAN Feng, ZUO Lei. Tuned nonlinear spring-inerterdamper vibration absorber for beam vibration reduction based on the exact nonlinear dynamics model [J]. Journal of Sound and Vibration, 2021, 509: 116246. DOI: https://doi.org/10.1016/j.jsv.2021.116246.

    Article  Google Scholar 

  20. BUKHARI M, BARRY O. Exact nonlinear dynamic analysis of a beam with a nonlinear vibration absorber and with various boundary conditions [J]. Journal of Computational and Nonlinear Dynamics, 2020, 15(1): 011003. DOI: https://doi.org/10.1115/1.4045287.

    Article  Google Scholar 

  21. WANG Xi, WU Hao-min, YANG Bin-tang. Nonlinear multimodal energy harvester and vibration absorber using magnetic softening spring [J]. Journal of Sound and Vibration, 2020, 476: 115332. DOI: https://doi.org/10.1016/j.jsv.2020.115332.

    Article  Google Scholar 

  22. LI Wen-ke, WIERSCHEM N E, LI Xin-hui, et al. Numerical study of a symmetric single-sided vibro-impact nonlinear energy sink for rapid response reduction of a cantilever beam [J]. Nonlinear Dynamics, 2020, 100(2): 951–971. DOI: https://doi.org/10.1007/s11071-020-05571-0.

    Article  Google Scholar 

  23. FANG Bin, THEURICH T, KRACK M, et al. Vibration suppression and modal energy transfers in a linear beam with attached vibro-impact nonlinear energy sinks [J]. Communications in Nonlinear Science and Numerical Simulation, 2020, 91: 105415. DOI: https://doi.org/10.1016/j.cnsns.2020.105415.

    Article  MathSciNet  Google Scholar 

  24. WEI Biao, WANG Peng, YANG Tian-han, et al. Effects of friction variability on isolation performance of rolling-spring systems [J]. Journal of Central South University, 2016, 23(1): 233–239. DOI: https://doi.org/10.1007/s11771-016-3066-4.

    Article  Google Scholar 

  25. TALEBITOOTI M, FADAEE M. Effects of carbon nanotube reinforcements on vibration suppression of magnetorheological fluid sandwich beam [J]. Journal of Intelligent Material Systems and Structures, 2019, 30(7): 1053–1069. DOI: https://doi.org/10.1177/1045389x19828830.

    Article  Google Scholar 

  26. ZENKOUR A M, EL-SHAHRANY H D. Vibration suppression analysis for laminated composite beams embedded actuating magnetostrictive layers [J]. Applied and Computational Mechanics, 2019, 50(1): 69–75. DOI: https://doi.org/10.22059/JCAMECH.2019.279153.384.

    Google Scholar 

  27. ZENKOUR A M, EL-SHAHRANY H D. Vibration suppression of advanced plates embedded magnetostrictive layers via various theories [J]. Journal of Materials Research and Technology, 2020, 9(3): 4727–4748. DOI: https://doi.org/10.1016/j.jmrt.2020.02.100.

    Article  Google Scholar 

  28. REDDY R S, PANDA S, GUPTA A. Nonlinear dynamics and active control of smart beams using shear/extensional mode piezoelectric actuators [J]. International Journal of Mechanical Sciences, 2021, 204: 106495. DOI: https://doi.org/10.1016/j.ijmecsci.2021.106495.

    Article  Google Scholar 

  29. HOSSEINI S M, KALHORI H, AL-JUMAILY A. Active vibration control in human forearm model using paired piezoelectric sensor and actuator [J]. Journal of Vibration and Control, 2021, 27(19–20): 2231–2242. DOI: https://doi.org/10.1177/1077546320957533.

    Article  MathSciNet  Google Scholar 

  30. LI Jian-tao, DENG Hua, JIANG Wen-jun. Dynamic response and vibration suppression of a cantilevered pipe conveying fluid under periodic excitation [J]. Journal of Vibration and Control, 2019, 25(11): 1695–1705. DOI: https://doi.org/10.1177/1077546319837789.

    Article  MathSciNet  Google Scholar 

  31. DATTA P. Active vibration control of axially functionally graded cantilever beams by finite element method [J]. Materials Today: Proceedings, 2021, 44: 2543–2550. DOI: https://doi.org/10.1016/j.matpr.2020.12.628.

    Google Scholar 

  32. EL-BORGI S, FERNANDES R, RAJENDRAN P, et al. Multiple bandgap formation in a locally resonant linear metamaterial beam: Theory and experiments [J]. Journal of Sound and Vibration, 2020, 488: 115647. DOI: https://doi.org/10.1016/j.jsv.2020.115647.

    Article  Google Scholar 

  33. JIN Yang, SHI Yan, YU Guo-cai, et al. A multifunctional honeycomb metastructure for vibration suppression [J]. International Journal of Mechanical Sciences, 2020, 188: 105964. DOI: https://doi.org/10.1016/j.ijmecsci.2020.105964.

    Article  Google Scholar 

  34. JIN You-zuo, LIU Ke-fu, XIONG Liu-yang, et al. A non-traditional variant nonlinear energy sink for vibration suppression and energy harvesting [J]. Mechanical Systems and Signal Processing, 2022, 181: 109479. DOI: https://doi.org/10.1016/j.ymssp.2022.109479.

    Article  Google Scholar 

  35. ZHANG Wei, CHANG Zhi-yong, CHEN Jie. Vibration reduction for an asymmetric elastically supported beam coupled to an inertial nonlinear energy sink [J]. Journal of Vibration Engineering & Technologies, 2023, 11(4): 1711–1723. DOI: https://doi.org/10.1007/s42417-022-00666-x.

    Article  Google Scholar 

  36. ZHANG Zhen, DING Hu, ZHANG Ye-wei, et al. Vibration suppression of an elastic beam with boundary inerter-enhanced nonlinear energy sinks [J]. Acta Mechanica Sinica, 2021, 37(3): 387–401. DOI: https://doi.org/10.1007/s10409-021-01062-6.

    Article  MathSciNet  Google Scholar 

  37. MA Chi-cheng, ZHANG Xi-nong, XIE Shi-lin, et al. Active linear quadratic Gaussian control of the vibration of a flexible beam with a time-varying mass [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2015, 229(6): 475–484. DOI: https://doi.org/10.1177/0959651815573898.

    Google Scholar 

  38. LEI Xu, SHEN Lian, CHEN Zheng-qing, et al. Experimental analysis of additional aerodynamic effects caused by wind-driven rain on bridge main girder [J]. Journal of Central South University, 2022, 29(8): 2743–2756. DOI: https://doi.org/10.1007/s11771-022-5115-5.

    Article  Google Scholar 

  39. KE Shi-tang, GE Yao-jun, ZHAO Lin, et al. Wind-induced responses of super-large cooling towers [J]. Journal of Central South University, 2013, 20(11): 3216–3228. DOI: https://doi.org/10.1007/s11771-013-1846-7.

    Article  Google Scholar 

  40. WANG Feng-de, XIAO Wen-sheng, YAO Ya-nan, et al. An analytical procedure to predict transverse vibration response of jack-up riser under the random wave load [J]. Shock and Vibration, 2020, 2020: 1–9. DOI: https://doi.org/10.1155/2020/5072989.

    Article  Google Scholar 

  41. TANG You-qi, MA Zhao-guang. Nonlinear vibration of axially moving beams with internal resonance, speed-dependent tension, and tension-dependent speed [J]. Nonlinear Dynamics, 2019, 98(4): 2475–2490. DOI: https://doi.org/10.1007/s11071-019-05105-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WANG Jia-hui provided the concept and edited the draft of manuscript. LIU Jing conducted the literature review and edited the manuscript. PAN Guang edited the manuscript.

Corresponding author

Correspondence to Jing Liu  (刘静).

Ethics declarations

WANG Jia-hui, LIU Jing and PAN Guang declared that they have no conflict of interest.

Additional information

Foundation item: Projects(52175120, 52211530085) supported by the National Natural Science Foundation of China; Project (CSTB2022NSCQ-MSX0318) supported by the Natural Science Foundation of Chongqing, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Jh., Liu, J. & Pan, G. A time-varying boundary method for multimodal vibration suppression of beam. J. Cent. South Univ. 30, 4122–4137 (2023). https://doi.org/10.1007/s11771-023-5509-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5509-z

Key words

关键词

Navigation