Skip to main content
Log in

One-step synthesis of porous nickel-aluminum layered double hydroxide with oxygen defects for high-performance supercapacitor electrode

一步水热法合成多孔氧缺陷镍铝双金属氢氧化物及其高电容存储

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Layered double hydroxide (LDH) has been regarded as one of ideal electrode for supercapacitors due to layered structure, multiple redox active centers, and synergistic effects between metal ions. However, low capacitance and poor cycling stability greatly limit their large-scale application. Herein, nickel-aluminum layered double hydroxide (NiAl-LDH) onto nickel foam has been prepared by a simple one-step hydrothermal method, with the charge storage capability controlled by using different reactant concentration. It is found that the reactant concentration can regulate the morphology, crystallinity and loading density of NiAl-LDH. The optimized NiAl-LDH (Ni1Al1-LDH) shows a porous nanosheet structure with oxygen defects, which tightly covers on the nickel foam to facilitate ion and electron transfers, improving the redox activity of Ni ions and thus energy storage. As a supercapacitor electrode, the Ni1Al1-LDH achieves a specific capacitance of 1958.1 F/g at a current density of 1 A/g. The capacitance retention rate can reach as high as 108.7% up to 1000 cycles of continuous charge and discharge at a scan rate of 100 mV/s.

摘要

层状双金属氢氧化物(LDH)由于具有层状结构、丰富的氧化还原活性中心和金属离子间的协同作用被认为是超级电容器的理想电极之一。然而, 低的比电容和较差的循环稳定性极大地限制了它们的规模化应用。本文采用简单的一步水热法在泡沫镍上制备层状镍铝双金属氢氧化物(NiAl-LDH), 并通过不同的反应物浓度控制其电荷存储能力。研究发现反应物浓度对NiAl-LDH 的形貌、结晶度和负载密度有明显调节作用。优化后的NiAl-LDH(Ni1Al1-LDH)具有丰富氧缺陷的多孔纳米片结构, 该结构紧密包覆在高导电性泡沫镍表面, 促进了离子和电子的转移, 有效提高了Ni 离子的氧化还原活性, 从而提高了能量储存能力。作为超级电容器电极, Ni1Al1-LDH 在电流密度为1 A/g 时的比电容为1958.1 F/g。在100 mV/s 的扫速下, 经过1000 次持续充放电循环, 电容保持率高达108.7%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. LIU Shao-bo, PENG Yu-hui, HAN Qiang, et al. Achieving superior energy storage and microwave absorption by simultaneously-controlling active heteroatoms and porosities in carbon nanosheets [J]. Journal of Alloys and Compounds, 2021, 860: 157898. DOI: https://doi.org/10.1016/j.jallcom.2020.157898.

    Article  Google Scholar 

  2. AUGUSTYN V, SIMON P, DUNN B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage [J]. Energy & Environmental Science, 2014, 7(5): 1597. DOI: https://doi.org/10.1039/c3ee44164d.

    Article  Google Scholar 

  3. MIN Xiao-bo, LIU Fan-song, WANG Yun-yan. Synthesis and electrochemical behavior of monolayer-TLQT for capacitive deionization [J]. Journal of Central South University, 2022, 29(2): 359–372. DOI: https://doi.org/10.1007/s11771-022-4893-0.

    Article  Google Scholar 

  4. LIU Shao-bo, LI Ao-lin, HAN Qiang, et al. Oxygen-directed porous activation of carbon nanospheres for enhanced capacitive energy storage [J]. Journal of Power Sources, 2021, 483: 229223. DOI: https://doi.org/10.1016/j.jpowsour.2020.229223.

    Article  Google Scholar 

  5. SHAO Guang-wei, GUO Shan-shan, YU Rui, et al. Stretchable supercapacitors: Electrodes, electrolytes, and devices [J]. Acta Physica Sinica, 2020, 69(17): 178801. DOI: https://doi.org/10.7498/aps.69.20200881.

    Article  Google Scholar 

  6. JIN Tian-xu, LIU Li, CHEN Shu-xin, et al. Hybrid power device design and application based on super capacitor in military equipment [J]. Journal of Central South University (Science and Technology), 2011, 42(Z1): 991–998. DOI: 1672-7207(2011)S1-0991-08. (in Chinese)

    Google Scholar 

  7. YANG Xiu-tao, XIA Hui, LIANG Zhong-guan, et al. Monodisperse carbon nanospheres with hierarchical porous structure as electrode material for supercapacitor [J]. Nanoscale Research Letters, 2017, 12(1): 1–5. DOI: https://doi.org/10.1186/s11671-017-2318-z.

    Article  Google Scholar 

  8. LIANG Zhong-guan, LIU Hao, ZENG Jian-ping, et al. Facile synthesis of nitrogen-doped microporous carbon spheres for high performance symmetric supercapacitors [J]. Nanoscale Research Letters, 2018, 13(1): 314. DOI: https://doi.org/10.1186/s11671-018-2713-0.

    Article  Google Scholar 

  9. LIU Shao-bo, HAN Qiang, YANG Cheng-gang, et al. High mass load of oxygen-enriched microporous hollow carbon spheres as electrode for supercapacitor with solar charging station application [J]. Journal of Colloid and Interface Science, 2022, 608: 1514–1525. DOI: https://doi.org/10.1016/j.jcis.2021.10.059.

    Article  Google Scholar 

  10. LI Heng-yue, GUO Hui, TONG Si-chao, et al. High-performance supercapacitor carbon electrode fabricated by large-scale roll-to-roll micro-gravure printing [J]. Journal of Physics D: Applied Physics, 2019, 52(11): 115501. DOI: https://doi.org/10.1088/1361-6463/aafb3.

    Article  Google Scholar 

  11. JIANG Lan-lan, WANG Xian-you, WU Hao, et al. Effect of carbonization temperature on structure and electrochemical performance of porous carbon from metal framework [J]. Journal of Central South University (Science and Technology), 2013, 44(10): 4012–4018. (in Chinese)

    Google Scholar 

  12. LIU Shao-bo, ZHAO Yang, ZHANG Bai-hui, et al. Nanomicro carbon spheres anchored on porous carbon derived from dual-biomass as high rate performance supercapacitor electrodes [J]. Journal of Power Sources, 2018, 381: 116–126. DOI: https://doi.org/10.1016/j.jpowsour.2018.02.014.

    Article  Google Scholar 

  13. LIN Jing-huang, JIA He-nan, LIANG Hao-yan, et al. High-performance supercapacitors: In situ synthesis of vertical standing nanosized NiO encapsulated in graphene as electrodes for high-performance supercapacitors [J]. Advanced Science, 2018, 5(3): 1700687. DOI: https://doi.org/10.1002/advs.201870019.

    Article  Google Scholar 

  14. NGUYEN T, EUGÉNIO S, BOUDARD M, et al. Hybrid nickel manganese oxide nanosheet-3D metallic dendrite percolation network electrodes for high-rate electrochemical energy storage [J]. Nanoscale, 2015, 7(29): 12452–12459. DOI: https://doi.org/10.1039/C5NR02888D.

    Article  Google Scholar 

  15. NGUYEN T, BOUDARD M, RAPENNE L, et al. Morphological changes and electrochemical response of mixed nickel manganese oxides as charge storage electrodes [J]. Journal of Materials Chemistry A, 2015, 3(20): 10875–10882. DOI: https://doi.org/10.1039/C5TA01453K.

    Article  Google Scholar 

  16. ANANDAN S, CHEN C Y, WU J J. Sonochemical synthesis and characterization of turbostratic MnNi(OH)2 layered double hydroxide nanoparticles for supercapacitor applications [J]. RSC Adv, 2014, 4(98): 55519–55523. DOI: https://doi.org/10.1039/c4ra10816g.

    Article  Google Scholar 

  17. LI M, CHENG J P, WANG J, et al. The growth of nickel-manganese and cobalt-manganese layered double hydroxides on reduced graphene oxide for supercapacitor [J]. Electrochimica Acta, 2016, 206: 108–115. DOI: https://doi.org/10.1016/j.electacta.2016.04.084.

    Article  Google Scholar 

  18. LIU Shao-bo, LI Ao-lin, YANG Cheng-gang, et al. MnO2/Mn2O3 with self-triggered oxygen-defects for superior pseudocapacitive energy storage [J]. Applied Surface Science, 2022, 571: 151306. DOI: https://doi.org/10.1016/j.apsusc.2021.151306.

    Article  Google Scholar 

  19. KURRA N, ALHEBSHI N A, ALSHAREEF H N. Microfabricated pseudocapacitors using Ni(OH)2 electrodes exhibit remarkable volumetric capacitance and energy density [J]. Advanced Energy Materials, 2015, 5(2): 1401303. DOI: https://doi.org/10.1002/aenm.201401303.

    Article  Google Scholar 

  20. YAN Jun, FAN Zhuang-jun, SUN Wei, et al. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density [J]. Advanced Functional Materials, 2012, 22(12): 2632–2641. DOI: https://doi.org/10.1002/adfm.201102839.

    Article  Google Scholar 

  21. WIMALASIRI Y, FAN R, ZHAO X S, et al. Assembly of NiAl layered double hydroxide and graphene electrodes for supercapacitors [J]. Electrochimica Acta, 2014, 134: 127–135. DOI: https://doi.org/10.1016/j.electacta.2014.04.129.

    Article  Google Scholar 

  22. GE Xiang, GU Chang-dong, YIN Zong-you, et al. Periodic stacking of 2D charged sheets: Self-assembled superlattice of Ni-Al layered double hydroxide (LDH) and reduced graphene oxide [J]. Nano Energy, 2016, 20: 185–193. DOI: https://doi.org/10.1016/j.nanoen.2015.12.020.

    Article  Google Scholar 

  23. BAO Wen-tao, TIAN Hua, JIANG Yang, et al. Controlled preparation of Ni-Al LDH-NO3 by a dual-anion intercalating process for supercapacitors [J]. Ionics, 2019, 25(8): 3859–3866. DOI: https://doi.org/10.1007/s11581-019-02952-3.

    Article  Google Scholar 

  24. WANG Zhuo, JIA Wei, JIANG Meng-lei, et al. Microwave-assisted synthesis of layer-by-layer ultra-large and thin NiAl-LDH/RGO nanocomposites and their excellent performance as electrodes [J]. Science China Materials, 2015, 58(12): 944–952. DOI: https://doi.org/10.1007/s40843-015-0110-x.

    Article  Google Scholar 

  25. WANG Wen-cong, ZHANG Ning, SHI Zhen-yu, et al. Preparation of Ni-Al layered double hydroxide hollow microspheres for supercapacitor electrode [J]. Chemical Engineering Journal, 2018, 338: 55–61. DOI: https://doi.org/10.1016/j.cej.2018.01.024.

    Article  Google Scholar 

  26. ZHANG Dong-dong, CAO Jin, ZHANG Xin-yu, et al. Modification strategies of layered double hydroxides for superior supercapacitors [J]. Advanced Energy and Sustainability Research, 2022, 3(3): 2100183. DOI: https://doi.org/10.1002/aesr.202100183.

    Article  Google Scholar 

  27. LI Xue, REN Jian-ning, SRIDHAR D, et al. Progress of layered double hydroxide-based materials for supercapacitors [J]. Materials Chemistry Frontiers, 2023, 7(8): 1520–1561. DOI: https://doi.org/10.1039/d2qm01346k.

    Article  Google Scholar 

  28. LIU Hao, LIANG Zhong-guan, LIU Shao-bo, et al. Nickel manganese hydroxides with thin-layer nanosheets and multivalences for high-performance supercapacitor [J]. Results in Physics, 2020, 16: 102831. DOI: https://doi.org/10.1016/j.rinp.2019.102831.

    Article  Google Scholar 

  29. LI Hong-xia, YU Yan-hao, STARR M B, et al. Piezotronic-enhanced photoelectrochemical reactions in Ni(OH)2-decorated ZnO photoanodes [J]. The Journal of Physical Chemistry Letters, 2015, 6(17): 3410–3416. DOI: https://doi.org/10.1021/acs.jpclett.5b01598.

    Article  Google Scholar 

  30. NIST X-Ray photoelectron spectroscopy database [EB/OL]. http://srdata.nist.gov/xps/selEnergyType.aspx.

  31. ZHANG Jun-liang, DING Lian-chun, SUN Wei-pei, et al. γ-In2S3 nanosheets-composed flowerlike nanostructure doped by Al3+ ions with optimal electronic structure and decreased work function of γ-In2S3 for CO2 electroreduction to formate [J]. Journal of Alloys and Compounds, 2021, 889: 161770. DOI: https://doi.org/10.1016/j.jallcom.2021.161770.

    Article  Google Scholar 

  32. LIU Y F, YUAN G H, JIANG Z H, et al. Preparation of Ni(OH)2-graphene sheet-carbon nanotube composite as electrode material for supercapacitors [J]. Journal of Alloys and Compounds, 2015, 618: 37–43. DOI: https://doi.org/10.1016/j.jallcom.2014.08.167.

    Article  Google Scholar 

  33. ZHAO Yan, HU Lin-feng, ZHAO Shu-yan, et al. Preparation of MnCo2O4@Ni(OH)2 core-shell flowers for asymmetric supercapacitor materials with ultrahigh specific capacitance [J]. Advanced Functional Materials, 2016, 26(23): 4085–4093. DOI: https://doi.org/10.1002/adfm.201600494.

    Article  Google Scholar 

  34. SU Dong-qin, TANG Ze-hua, XIE Jin-feng, et al. Co, Mn-LDH nanoneedle arrays grown on Ni foam for high performance supercapacitors [J]. Applied Surface Science, 2019, 469: 487–494. DOI: https://doi.org/10.1016/j.apsusc.2018.10.276.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LIU Shao-bo and ZHAO Yong-feng conducted the literature review, provided the concept and edited the draft of manuscript. They contributed this work equally. LI Heng-yue and YANG Jun-liang reviewed, designed the work and guided the writing.

Corresponding authors

Correspondence to Heng-yue Li  (李恒月) or Jun-liang Yang  (阳军亮).

Ethics declarations

LIU Shao-bo, ZHAO Yong-feng, LI Heng-yue and YANG Jun-liang declare that they have no conflict of interest.

Additional information

Foundation item: Project(2022YFB3803300) supported by the National Key Research and Development Program of China; Project (52173192) supported by the National Natural Science Foundation of China; Project(2023JJ40040) supported by the Natural Science Foundation of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Sb., Zhao, Yf., Li, Hy. et al. One-step synthesis of porous nickel-aluminum layered double hydroxide with oxygen defects for high-performance supercapacitor electrode. J. Cent. South Univ. 30, 4138–4148 (2023). https://doi.org/10.1007/s11771-023-5501-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5501-7

Key words

关键词

Navigation