Skip to main content
Log in

A modified M2 high-speed steel enhanced by in-situ synthesized core-shell MC carbides

原位合成核壳MC碳化物增强的M2高速钢

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

With high-energy wet ball milling M2 high-speed steel (HSS) powder and ferrovanadium alloy, an in-situ synthesized core-shell MC carbides reinforced M2 HSS was prepared via vacuum sintering. The phase, morphology and composition distribution of the milled composite powders, and the evolution of the sintered microstructure with the temperature and the associated mechanical properties before and after heat treatment were investigated. The ground powders were fully refined into lamellae and aggregates with V-element evenly distributed inside. Almost full densification (∼99.2% relative density) of the modified M2 steel was achieved at 1180 °C by supersolidus liquid phase sintering. Near-spherical MC carbides and irregular M6C carbides were dispersed within the HSS matrix, and the MC developed a core-shell structure due to the solidification of the sintering liquid. Both the matrix grains and carbides of the sintered alloy had been refined by heat treatment, reaching satisfactory bending strength of 3580 MPa and hardness of HRC58, and enhancing the scratch resistance significantly.

摘要

采用高能湿球磨M2高速钢粉末和钒铁合金,通过真空烧结制备了原位合成核壳MC碳化物增强的M2 高速钢。研究了球磨后复合粉末的相组成、形貌与成分分布,分析了烧结显微组织随温度的演变,以及测试了烧结样品热处理前后的力学性能。结果表明:球磨后的粉末完全细化成片状和团聚状,内部均匀分布着V元素。在1180 ℃下经过超固相液相烧结,改性的M2 钢烧结体基本全致密化(∼99.2%的相对密度)。近球形MC碳化物和不规则形状M6C碳化物弥散分布在烧结高速钢的基体中,烧结液相的扩散与凝固促进MC碳化物形成了核壳结构。通过热处理,烧结合金的基体晶粒和碳化物都得到了细化,弯曲强度达到3580 MPa,硬度达到HRC58,抗划伤性能得到显著增强。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. LEE E S, PARK W J, BAIK K H, et al. Different carbide types and their effect on bend properties of a spray-formed high speed steel [J]. Scripta Materialia, 1998, 39(8): 1133–1138. DOI: https://doi.org/10.1016/s1359-6462(98)00270-x.

    Article  CAS  Google Scholar 

  2. NOGUEIRA R A, RIBEIRO O C S, DAS NEVES M D M, et al. Effect of heat treatment on microstructure of commercial and vacuum sintered high speed steels AISI M2 and T15 [J]. Materials Science Forum, 2005, 498–499: 186–191. DOI: https://doi.org/10.4028/www.scientific.net/msf.498-499.186.

    Article  Google Scholar 

  3. GIMÉNEZ S, ZUBIZARRETA C, TRABADELO V, et al. Sintering behaviour and microstructure development of T42 powder metallurgy high speed steel under different processing conditions [J]. Materials Science and Engineering A, 2008, 480(1–2): 130–137. DOI: https://doi.org/10.1016/j.msea.2007.06.082.

    Article  Google Scholar 

  4. PAVLÍČKOVÁ M, VOJTĚCH D, NOVÁK P, et al. Thermal treatment of PM-tool steel alloyed with niobium [J]. Materials Science and Engineering A, 2003, 356(1–2): 200–207. DOI: https://doi.org/10.1016/s0921-5093(03)00120-5.

    Article  Google Scholar 

  5. MESQUITA R A, BARBOSA C A. Spray forming high speed steel—Properties and processing [J]. Materials Science and Engineering A, 2004, 383(1): 87–95. DOI: https://doi.org/10.1016/j.msea.2004.02.035.

    Article  Google Scholar 

  6. BOLTON J. Modern developments in sintered high speed steels [J]. Metal Powder Report, 1996, 51(2): 33–36. DOI: https://doi.org/10.1016/s0026-0657(99)80596-7.

    Article  Google Scholar 

  7. WRIGHT C S, WRONSKI A S, ITURRIZA I. Development of robust processing routes for powder metallurgy high speed steels [J]. Materials Science and Technology, 2000, 16(9): 945–957. DOI: https://doi.org/10.1179/026708300101508793.

    Article  ADS  CAS  Google Scholar 

  8. VÁREZ A, LEVENFELD B, TORRALBA J M, et al. Sintering in different atmospheres of T15 and M2 high speed steels produced by a modified metal injection moulding process [J]. Materials Science and Engineering A, 2004, 366(2): 318–324. DOI: https://doi.org/10.1016/j.msea.2003.08.028.

    Article  Google Scholar 

  9. WRIGHT C S, OGEL B. Supersolidus sintering of high speed steels: Part 1: Sintering of molybdenum based alloys [J]. Powder Metallurgy, 1993, 36(3): 213–219. DOI: https://doi.org/10.1179/pom.1993.36.3.213.

    Article  ADS  CAS  Google Scholar 

  10. OLIVEIRA M M, BOLTON J D. Sintering of M3/2 high speed steel modified by additions of copper phosphide and titanium based ceramic compounds [J]. Powder Metallurgy, 1995, 38(2): 131–140. DOI: https://doi.org/10.1179/pom.1995.38.2.131.

    Article  ADS  CAS  Google Scholar 

  11. SUSTARSIC B, KOSEC L, DOLINSEK S, et al. The characteristics of vacuum sintered M3/2 type HSSs with MoS2 addition [J]. Journal of Materials Processing Technology, 2003, 143–144: 98–104. DOI: https://doi.org/10.1016/s0924-0136(03)00328-5.

    Article  Google Scholar 

  12. TORRALBA J M, CAMBRONERO L E G, RUIZ-PRIETO J M, et al. Sinterability study of PM M2 and T15 high speed steels reinforced with tungsten and titanium carbides [J]. Powder Metallurgy, 1993, 36(1): 55–66. DOI: https://doi.org/10.1179/pom.1993.36.1.55.

    Article  ADS  CAS  Google Scholar 

  13. HERRANZ G, ROMERO A, DE CASTRO V, et al. Processing of AISI M2 high speed steel reinforced with vanadium carbide by solar sintering [J]. Materials & Design, 2014, 54: 934–946. DOI: https://doi.org/10.1016/j.matdes.2013.09.027.

    Article  CAS  Google Scholar 

  14. ZAPATA W C, DA COSTA C E, TORRALBA J M. Sinterability and wear behaviour of P/M M2 high speed steel reinforced with NbC composite [J]. Journal of Materials Processing Technology, 1995, 53(1–2): 483–490. DOI: https://doi.org/10.1016/0924-0136(95)02005-7.

    Article  Google Scholar 

  15. GORDO E, VELASCO F, ANTÓN N, et al. Wear mechanisms in high speed steel reinforced with (NbC)p and (TaC)p MMCs [J]. Wear, 2000, 239(2): 251–259. DOI: https://doi.org/10.1016/s0043-1648(00)00329-x.

    Article  CAS  Google Scholar 

  16. ZHANG Xiao-nong, LÜ Wei-jie, ZHANG Di, et al. In situ technique for synthesizing (TiB+TiC)/Ti composites [J]. Scripta Materialia, 1999, 41(1): 39–46. DOI: https://doi.org/10.1016/s1359-6462(99)00087-1.

    Article  CAS  Google Scholar 

  17. HE Lin, LIU Ying, LI Bing-hong, et al. Reaction synthesis of in situ vanadium carbide particulates-reinforced iron matrix composites by spark plasma sintering [J]. Journal of Materials Science, 2010, 45(9): 2538–2542. DOI: https://doi.org/10.1007/s10853-010-4295-9.

    Article  ADS  CAS  Google Scholar 

  18. HARI KUMAR K C, RAGHAVAN V. A thermodynamic reassessment of the FE-V system [J]. CALPHAD, 1991, 15(3): 307–314. DOI: https://doi.org/10.1016/0364-5916(91)90008-8.

    Article  Google Scholar 

  19. LIU Z Y, LOH N H, KHOR K A, et al. Mechanical alloying of TiC/M2 high speed steel composite powders and sintering investigation [J]. Materials Science and Engineering A, 2001, 311(1–2): 13–21. DOI: https://doi.org/10.1016/s0921-5093(01)00929-7.

    Article  Google Scholar 

  20. WANG Xiao-jun, ZHOU Xiao-ping, ZHU Li-kui. Evolution of ball-milling Al−TiO2−B2O3 powder structural characterization and characteristic analysis of combustion reaction [J]. Chinese Journal of Rare Metals, 2014, 38(3): 419–426. DOI: https://doi.org/10.13373/j.cnki.cjrm.2014.03.012. (in Chinese)

    ADS  Google Scholar 

  21. COSTA B F O, LE CAËR G, MALAMAN B. Evolution of a FeV sigma phase ball-milled in a mixture of argon and air [J]. Hyperfine Interactions, 2008, 183(1): 67–73. DOI: https://doi.org/10.1007/s10751-008-9760-3.

    Article  ADS  CAS  Google Scholar 

  22. CHEN Nan, LUO Ren, XIONG Hui-wen, et al. Dense M2 high speed steel containing core-shell MC carbonitrides using high-energy ball milled M2/VN composite powders [J]. Materials Science and Engineering A, 2020, 771: 138628. DOI: https://doi.org/10.1016/j.msea.2019.138628.

    Article  CAS  Google Scholar 

  23. ZHANG Qian-kun, JIANG Yao, SHEN Wei-jun, et al. Direct fabrication of high-performance high speed steel products enhanced by LaB 6 [J]. Materials & Design, 2016, 112: 469–478. DOI: https://doi.org/10.1016/j.matdes.2016.09.044.

    Article  Google Scholar 

  24. SPEARS M A, EVANS A G. Microstructure development during final/intermediate stage sintering—II. Grain and pore coarsening [J]. Acta Metallurgica, 1982, 30(7): 1281–1289. DOI: https://doi.org/10.1016/0001-6160(82)90146-8.

    Article  Google Scholar 

  25. XU Liu-jie, WEI Shi-zhong, XING Jian-dong, et al. Phase structure and fine microstructure of in situ vanadium carbides in cast high-vanadium high-speed steel [J]. Metals and Materials International, 2006, 12(5): 371–375. DOI: https://doi.org/10.1007/BF03027702.

    Article  CAS  Google Scholar 

  26. LIU Z H, ZHANG D Q, CHUA C K, et al. Crystal structure analysis of M2 high speed steel parts produced by selective laser melting [J]. Materials Characterization, 2013, 84: 72–80. DOI: https://doi.org/10.1016/j.matchar.2013.07.010.

    Article  CAS  Google Scholar 

  27. JAUREGI S, FERNANDEZ F, PALMA R H, et al. Influence of atmosphere on sintering of T15 and M2 steel powders [J]. Metallurgical Transactions A, 1992, 23(2): 389–400. DOI: https://doi.org/10.1007/BF02801157.

    Article  ADS  Google Scholar 

  28. RONG Wang, ANDRÉN H O, WISELL H, et al. The role of alloy composition in the precipitation behaviour of high speed steels [J]. Acta Metallurgica et Materialia, 1992, 40(7): 1727–1738. DOI: https://doi.org/10.1016/0956-7151(92)90116-v.

    Article  CAS  Google Scholar 

  29. WRIGHT C S, YOUSEFFI M, WRONSKI A S, et al. Supersolidus liquid phase sintering of high speed steels: Part 3: Computer aided design of sinterable alloys [J]. Powder Metallurgy, 1999, 42(2): 131–146. DOI: https://doi.org/10.1179/003258999665486.

    Article  ADS  CAS  Google Scholar 

  30. YAN Fei, XU Zhou, SHI Hai-sheng, et al. Microstructure of the spray formed Vanadis 4 steel and its ultrafine structure [J]. Materials Characterization, 2008, 59(5): 592–597. DOI: https://doi.org/10.1016/j.matchar.2007.04.019.

    Article  ADS  CAS  Google Scholar 

  31. PENG Han-lin, HU Ling, NGAI T, et al. Effects of austenitizing temperature on microstructure and mechanical property of a 4-GPa-grade PM high-speed steel [J]. Materials Science and Engineering A, 2018, 719: 21–26. DOI: https://doi.org/10.1016/j.msea.2018.02.010.

    Article  CAS  Google Scholar 

  32. PAN Yu, PI Zi-qiang, LIU Bo-wen, et al. Influence of heat treatment on the microstructural evolution and mechanical properties of W6Mo5Cr4V2Co5Nb (825K) high speed steel [J]. Materials Science and Engineering A, 2020, 787: 139480. DOI: https://doi.org/10.1016/j.msea.2020.139480.

    Article  CAS  Google Scholar 

  33. PAGOUNIS E, TALVITIE M, LINDROOS V K. Microstructure and mechanical properties of hot work tool steel matrix composites produced by hot isostatic pressing [J]. Powder Metallurgy, 1997, 40(1): 55–61. DOI: https://doi.org/10.1179/pom.1997.40.1.55.

    Article  ADS  CAS  Google Scholar 

  34. JOVIČEVIĆ-KLUG P, PUŠ G, JOVIČEVIĆ-KLUG M, et al. Influence of heat treatment parameters on effectiveness of deep cryogenic treatment on properties of high-speed steels [J]. Materials Science and Engineering A, 2022, 829: 142157. DOI: https://doi.org/10.1016/j.msea.2021.142157.

    Article  Google Scholar 

  35. MESQUITA R A, BARBOSA C A. High-speed steels produced by conventional casting, spray forming and powder metallurgy [J]. Materials Science Forum, 2005, 498–499: 244–250. DOI: https://doi.org/10.4028/www.scientific.net/msf.498-499.244.

    Article  Google Scholar 

  36. PAGOUNIS E, LINDROOS V K. Processing and properties of particulate reinforced steel matrix composites [J]. Materials Science and Engineering A, 1998, 246(1–2): 221–234. DOI: https://doi.org/10.1016/s0921-5093(97)00710-7.

    Article  Google Scholar 

  37. DALMAU A, RMILI W, JOLY D, et al. Tribological behavior of new martensitic stainless steels using scratch and dry wear test [J]. Tribology Letters, 2014, 56(3): 517–529. DOI: https://doi.org/10.1007/s11249-014-0429-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CHEN Nan and CHEN Long-wei carried out the experiment, analyzed the measured data, and wrote the first draft of the manuscript. TENG Hao and LI Zhi-you provided the concept and edited the draft of the manuscript. TENG Hao, LI Zhi-you and YUAN Tie-chui provided the financial support. All authors replied to reviewers’ comments and revised the final version.

Corresponding authors

Correspondence to Hao Teng  (滕浩) or Zhi-you Li  (李志友).

Ethics declarations

CHEN Nan, CHEN Long-wei, TENG Hao, LI Zhi-you and YUAN Tie-chui declare that they have no conflict of interest.

Additional information

Foundation item: Project(2021JJ30577) supported by Hunan Provincial Natural Science Foundation of China; Project(X202110555425) supported by College Students Innovation and Entrepreneurship Training Program of University of South China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Chen, Lw., Teng, H. et al. A modified M2 high-speed steel enhanced by in-situ synthesized core-shell MC carbides. J. Cent. South Univ. 31, 84–100 (2024). https://doi.org/10.1007/s11771-023-5500-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5500-8

Key words

关键词

Navigation