Skip to main content
Log in

Numerical study of solar tray with noble Mxene nanofluids

含Mxene 新型纳米流体太阳能托盘的数值研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This study computationally examined the thermal and fluid behavior of Mxene-soya bean oil nanofluids in a single solar tray. A solar energy harvesting device that has an inlet and output is called a solar tray. With a steady heat flux, the Mxene nanofluids were pumped through the solar tray at different volume concentrations. A solar tray was utilized to simulate the thermophysical experimental data of Mxene-based nanofluids using a computational fluid dynamics (CFD) fluid flow radiation model. Temperature, internal energy, Nusselt number, heat transfer rate, surface heat transfer coefficient, and skin friction coefficient were among the several thermal and hydrodynamic parameters investigated. For Mxene nanofluids, the maximum increases in outlet temperature, internal energy, and skin friction coefficient were 3.46%, 1.2% and 11%, respectively. Finally, the solar tray’s efficiency has enhanced by 30%–32%. Moreover, the thermal use offers improved prospects for this newly developed Mxene nanofluid. Afterward, thermophysical values have been ratified by ANOVA analysis interpretation.

摘要

本研究通过计算研究了Mxene-大豆油纳米流体在单个太阳能托盘中的热学和流体行为. 太阳能托盘具有输入口和输出口. 在稳定的热通量下, 将Mxene 纳米流体以不同的体积浓度泵送通过太阳能板. 采用计算流体动力学(CFD)流体流动辐射模型, 利用太阳能板模拟Mxene 纳米流体的热物理实验数据. 研究了温度、 内能、 努塞尔数、 传热速率、 表面传热系数和表面摩擦因数等热力学和流体力学参数的影响. 对于Mxene 纳米流体, 出口温度、 内能和表面摩擦因数的最大增幅分别为3.46%、1.2%和11%. 太阳能板的效率提高了30%~32%. 此外, 新开发的Mxene 纳米流体具有很好的热应用前景, 热物性能也经过方差分析得到证实.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

K :

Thermal conductivity (W/(m·K))

μ :

Viscosity (kg/(mμs))

T :

Temperature (K)

v :

Velocity (m/s)

τ :

Stress tensor

U :

Velocity vector

p :

Pressure (kg/(m·s2))

g :

Gravitational acceleration (m/s2)

h :

Sensible enthalpy (J)

∇:

Advection operator

k :

Turbulent kinetic energy (TKE)

ϵ :

Dissipation of turbulent kinetic energy

σ :

Stefan-Boltzmann constant

q r :

Radiation heat flux (W/m2)

Γ :

Combination parameter

ω :

Albedo

G :

Incident radiation (W/m2)

ψ :

General velocity in Darcy-Forchheimer drag force model

EP:

Epoxy resin

T g :

Glass transition temperature

E s :

Shortage modules

Nu :

Nusselt number

CFD:

Computational fluid dynamics

CPVT:

Concentrated solar photovoltaic thermal

PV/T:

Photovoltaic thermal system

References

  1. FEYNMAN R P. There’s plenty of room at the bottom [J]. Engineering and Science, 1960, 23(5): 22–36.

    Google Scholar 

  2. KUNO M K. Introduction to nanoscience and nanotechnology: A workbook [M]. University of Notre Dame, 2005.

  3. AHMED A, SHARMA S, ADAK B, et al. Two-dimensional MXenes: New frontier of wearable and flexible electronics [J]. Info Mat, 2022, 4(4): e12295. DOI: https://doi.org/10.1002/inf2.12295.

    Google Scholar 

  4. SARYCHEVA A, GOGOTSI Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene [J]. Chemistry of Materials, 2020, 32(8): 3480–3488. DOI: https://doi.org/10.1021/acs.chemmater.0c00359.

    Article  Google Scholar 

  5. JOLLY S, PARANTHAMAN M P, NAGUIB M. Synthesis of Ti3C2Tz MXene from low-cost and environmentally friendly precursors [J]. Materials Today Advances, 2021, 10: 100139. DOI: https://doi.org/10.1016/j.mtadv.2021.100139.

    Article  Google Scholar 

  6. HANTANASIRISAKUL K, GOGOTSI Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes) [J]. Advanced Materials, 2018, 30(52): 1804779. DOI: https://doi.org/10.1002/adma.201804779.

    Article  Google Scholar 

  7. MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides [J]. Nature Communications, 2013, 4: 1716. DOI: https://doi.org/10.1038/ncomms2664.

    Article  Google Scholar 

  8. KHAZAEI M, ARAI M, SASAKI T, et al. Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides [J]. Advanced Functional Materials, 2013, 23(17): 2185–2192. DOI: https://doi.org/10.1002/adfm.201202502.

    Article  Google Scholar 

  9. LING Zheng, REN Chang-e, ZHAO Meng-qiang, et al. Flexible and conductive MXene films and nanocomposites with high capacitance [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(47): 16676–16681. DOI: https://doi.org/10.1073/pnas.1414215111.

    Article  Google Scholar 

  10. ZHANG Heng, WANG Li-bo, ZHOU Ai-guo, et al. Effects of 2-D transition metal carbide Ti2CTx on properties of epoxy composites [J]. RSC Advances, 2016, 6(90): 87341–87352. DOI: https://doi.org/10.1039/c6ra14560d.

    Article  Google Scholar 

  11. JUN B M, KIM S, HEO J, et al. Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications [J]. Nano Research, 2019, 12(3): 471–487. DOI: https://doi.org/10.1007/s12274-018-2225-3.

    Article  Google Scholar 

  12. RASOOL K, HELAL M, ALI A, et al. Antibacterial activity of Ti3C2Tx MXene [J]. ACS Nano, 2016, 10(3): 3674–3684. DOI: https://doi.org/10.1021/acsnano.6b00181.

    Article  Google Scholar 

  13. BERGHOUT N, MEERMAN H, van den BROEK M, et al. Assessing deployment pathways for greenhouse gas emissions reductions in an industrial plant: A case study for a complex oil refinery [J]. Applied Energy, 2019, 236: 354–378. DOI: https://doi.org/10.1016/j.apenergy.2018.11.074.

    Article  Google Scholar 

  14. MA Sai-nan, QARONY W, HOSSAIN M I, et al. Metal-organic framework derived porous carbon of light trapping structures for efficient solar steam generation [J]. Solar Energy Materials and Solar Cells, 2019, 196: 36–42. DOI: https://doi.org/10.1016/j.solmat.2019.02.035.

    Article  Google Scholar 

  15. BAGHERZADEH-KHAJEHMARJAN E, NIKNIAZI A, OLYAEEFAR B, et al. Bulk luminescent solar concentrators based on organic-inorganic CH3NH3PbBr3 perovskite fluorophores [J]. Solar Energy Materials and Solar Cells, 2019, 192: 44–51. DOI: https://doi.org/10.1016/j.solmat.2018.12.009.

    Article  Google Scholar 

  16. XIE Ning, LUO Jian-min, LI Zhong-ping, et al. Salt hydrate/expanded vermiculite composite as a form-stable phase change material for building energy storage [J]. Solar Energy Materials and Solar Cells, 2019, 189: 33–42. DOI: https://doi.org/10.1016/j.solmat.2018.09.016.

    Article  Google Scholar 

  17. DIAB M R, ESSA F A, ABOU-TALEB F S, et al. Solar still with rotating parts: A review [J]. Environmental Science and Pollution Research, 2021, 28(39): 54260–54281. DOI: https://doi.org/10.1007/s11356-021-15899-8.

    Article  Google Scholar 

  18. MUSTAFA J, ALQAED S, SHARIFPUR M. Investigation into the use of phase change materials in thermal management of a solar panel in the vicinity of tubes with slotted rectangular fins [J]. Applied Thermal Engineering, 2022, 215: 118905. DOI: https://doi.org/10.1016/j.applthermaleng.2022.118905.

    Article  Google Scholar 

  19. FARHANA K, KADIRGAMA K, RAHMAN M M, et al. Significance of alumina in nanofluid technology [J]. Journal of Thermal Analysis and Calorimetry, 2019, 138(2): 1107–1126. DOI: https://doi.org/10.1007/s10973-019-08305-6.

    Article  Google Scholar 

  20. FARHANA K, KADIRGAMA K, RAHMAN M M, et al. Improvement in the performance of solar collectors with nanofluids—A state-of-the-art review [J]. Nano-Structures & Nano-Objects, 2019, 18: 100276. DOI: https://doi.org/10.1016/j.nanoso.2019.100276.

    Article  Google Scholar 

  21. NAWSUD Z A, ALTOUNI A, AKHIJAHANI H S, et al. A comprehensive review on the use of nano-fluids and nano-PCM in parabolic trough solar collectors (PTC) [J]. Sustainable Energy Technologies and Assessments, 2022, 51: 101889. DOI: https://doi.org/10.1016/j.seta.2021.101889.

    Article  Google Scholar 

  22. LI Ren-yuan, ZHANG Lian-bin, SHI Le, et al. MXene Ti3C2: An effective 2D light-to-heat conversion material [J]. ACS Nano, 2017, 11(4): 3752–3759. DOI: https://doi.org/10.1021/acsnano.6b08415.

    Article  Google Scholar 

  23. LIU Rui, LI Wei-hua. High-thermal-stability and high-thermal-conductivity Ti3C2Tx MXene/Poly(vinyl alcohol) (PVA) composites [J]. ACS Omega, 2018, 3(3): 2609–2617. DOI: https://doi.org/10.1021/acsomega.7b02001.

    Article  Google Scholar 

  24. ASLFATTAHI N, SAMYLINGAM L, ABDELRAZIK A S, et al. MXene based new class of silicone oil nanofluids for the performance improvement of concentrated photovoltaic thermal collector [J]. Solar Energy Materials and Solar Cells, 2020, 211: 110526. DOI: https://doi.org/10.1016/j.solmat.2020.110526.

    Article  Google Scholar 

  25. DAVIDSON D. The role of computational fluid dynamics in process industries [C]// Eighth Annu Symp Front Eng. Washington, D. C.: The National Academies Press, 2003: 21–28.

    Google Scholar 

  26. KOZIEL S, YANG X S. Computational optimization, methods and algorithms [M]. Berlin: Springer, 2011.

    Book  Google Scholar 

  27. FARHANA K, KADIRGAMA K, NOOR M M, et al. CFD modelling of different properties of nanofluids in header and riser tube of flat plate solar collector [J]. IOP Conference Series: Materials Science and Engineering, 2019, 469: 012041. DOI: https://doi.org/10.1088/1757-899x/469/1/012041.

    Article  Google Scholar 

  28. VERSTEEG H, MALALASEKRA W. An introduction to computational fluid dynamics: the finite volume method approach [M]. Harlow, England: Longman Scientific and Technical, 1995.

    Google Scholar 

  29. CRNJAC P, ŠKERGET L, RAVNIK J, et al. Implementation of the rosseland and the P1 radiation models in the system of navier-stokes equations with the boundary element method [J]. International Journal of Computational Methods and Experimental Measurements, 2017, 5(3): 348–358. DOI: https://doi.org/10.2495/cmem-v5-n3-348-358.

    Article  Google Scholar 

  30. AHMED A, HOSSAIN M M, ADAK B, et al. Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications [J]. Chemistry of Materials, 2020, 32(24): 10296–10320. DOI: https://doi.org/10.1021/acs.chemmater.0c03392.

    Article  Google Scholar 

  31. MAHAMUDE A, WAN Ha-run, KADIRGAMA K, et al. Experimental study on the efficiency improvement of flat plate solar collectors using hybrid nanofluids graphene/waste cotton [J]. Energies, 2022, 15(7): 2309. DOI: https://doi.org/10.3390/en15072309.

    Article  Google Scholar 

  32. FARHANA K, KADIRGAMA K, MOHAMMED H A, et al. Analysis of efficiency enhancement of flat plate solar collector using crystal nano-cellulose (CNC) nanofluids [J]. Sustainable Energy Technologies and Assessments, 2021, 45: 101049. DOI: https://doi.org/10.1016/j.seta.2021.101049.

    Article  Google Scholar 

  33. GANVIR R B, WALKE P V, KRIPLANI V M. Heat transfer characteristics in nanofluid—A review [J]. Renewable and Sustainable Energy Reviews, 2017, 75: 451–460. DOI: https://doi.org/10.1016/j.rser.2016.11.010.

    Article  Google Scholar 

  34. PHILIP J, SHIMA P D. Thermal properties of nanofluids [J]. Advances in Colloid and Interface Science, 2012, 183 - 184: 30–45. DOI: https://doi.org/10.1016/j.cis.2012.08.001.

    Article  Google Scholar 

  35. WEN D S, DING Y L. Effect on heat transfer of particle migration in suspensions of nanoparticles flowing through minichannels [C]// Proceedings of ASME 2004 2nd International Conference on Microchannels and Minichannels. New York, USA: Rochester, 2004: 939–946. DOI: https://doi.org/10.1115/ICMM2004-2434.

    Chapter  Google Scholar 

  36. CENGEL Y A, BOLES M A. Thermodynamics: An engineering approach [M]. 6th editon. New York: The McGraw-Hill Companies, Inc., 2007.

    Google Scholar 

  37. DING Yu-long, WEN Dong-sheng. Particle migration in a flow of nanoparticle suspensions [J]. Powder Technology, 2005, 149(2–3): 84–92. DOI: https://doi.org/10.1016/j.powtec.2004.11.012.

    Article  Google Scholar 

  38. FARHANA K, MAHAMUDE A F, KADIRGAMA K, et al. Internal energy analysis with nanofluids in header and riser tube of flat plate solar collector by CFD modelling [J]. IOP Conference Series: Materials Science and Engineering, 2019, 469: 012069. DOI: https://doi.org/10.1088/1757-899x/469/1/012069.

    Article  Google Scholar 

  39. FAISAL MAHAMUDE A S, SHARUZI WAN HARUN W, KADIRGAMA K, et al. Numerical studies of graphene hybrid nanofluids in flat plate solar collector [C]// 2021 International Congress of Advanced Technology and Engineering (ICOTEN). Taiz, Yemen: IEEE, 2021: 1–6. DOI: https://doi.org/10.1109/ICOTEN52080.2021.9493516.

    Google Scholar 

  40. FARHANA K, KADIRGAMA K, NOOR M M. Analysis of non-dimensional numbers of fluid flowing inside tubes of flat plate solar collector [C]// Advances in Mechatronics, Manufacturing, and Mechanical Engineering. Singapore: Springer, 2021: 121–131.10.1007/978-981-15-7309-5_12.

    Chapter  Google Scholar 

  41. MOSTAFAZADE ABOLMAALI A, AFSHIN H. Development of Nusselt number and friction factor correlations for the shell side of spiral-wound heat exchangers [J]. International Journal of Thermal Sciences, 2019, 139: 105–117. DOI: https://doi.org/10.1016/j.ijthermalsci.2019.01.038.

    Article  Google Scholar 

  42. NOJOOMIZADEH M, KARIMIPOUR A, FIROUZI M, et al. Investigation of permeability and porosity effects on the slip velocity and convection heat transfer rate of Fe3O4/water nanofluid flow in a microchannel while its lower half filled by a porous medium [J]. International Journal of Heat and Mass Transfer, 2018, 119: 891–906. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.125.

    Article  Google Scholar 

  43. RUBBI F, HABIB K, SAIDUR R, et al. Performance optimization of a hybrid PV/T solar system using Soybean oil/MXene nanofluids as a new class of heat transfer fluids [J]. Solar Energy, 2020, 208: 124–138. DOI: https://doi.org/10.1016/j.solener.2020.07.060.

    Article  Google Scholar 

  44. WEN Dong-sheng, DING Yu-long. Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions [J]. International Journal of Heat and Mass Transfer, 2004, 47(24): 5181–5188. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.012.

    Article  Google Scholar 

  45. ALVES S M, MELLO V S, FARIA E A, et al. Nanolubricants developed from tiny CuO nanoparticles [J]. Tribology International, 2016, 100: 263–271. DOI: https://doi.org/10.1016/j.triboint.2016.01.050.

    Article  Google Scholar 

  46. WHATMORE R W. Nanotechnology—What is it? Should we be worried? [J]. Occupational Medicine, 2006, 56(5): 295–299. DOI: https://doi.org/10.1093/occmed/kql050.

    Article  Google Scholar 

  47. SAMYLINGAM L, ASLFATTAHI N, SAIDUR R, et al. Thermal and energy performance improvement of hybrid PV/T system by using olein palm oil with MXene as a new class of heat transfer fluid [J]. Solar Energy Materials and Solar Cells, 2020, 218: 110754. DOI: https://doi.org/10.1016/j.solmat.2020.110754.

    Article  Google Scholar 

  48. RUBBI F, HABIB K, SAIDUR R, et al. Performance optimization of a hybrid PV/T solar system using soy bean oil/MXene nanofluids as a new class of heat transfer fluids [J]. Solar Energy, 2020, 208: 124–138. DOI: https://doi.org/10.1016/j.solener.2020.07.060.

    Article  Google Scholar 

  49. SAYANTAN M, PURNA CHANDRA M, HIMANGSHU B. Parametric study on skin friction coefficient and wall shear stress of titania/water nanofluids flowing over a horizontal flat plate [J]. i-manager’s Journal on Mechanical Engineering, 2016, 6(4): 1. DOI: https://doi.org/10.26634/jme.6.4.8290.

    Article  Google Scholar 

  50. BARROS J M, SCHULTZ M P, FLACK K A. Measurements of skin-friction of systematically generated surface roughness [J]. International Journal of Heat and Fluid Flow, 2018, 72: 1–7. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2018.04.015.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Kaniz FARHANA: designing the concept, writing-original draft, editing, simulating, and data curing; Abu Shadate Faisal MAHAMUDE: data checking, writing, and analyzing data; Kumaran KADIRGAMA: providing overall supervision and funding resources.

Corresponding author

Correspondence to Kaniz Farhana.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Foundation item: Project supported by the University Malaysia Pahang and Bangabandhu Science and Technology Fellowship Trust

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhana, K., Mahamude, A.S.F. & Kadirgama, K. Numerical study of solar tray with noble Mxene nanofluids. J. Cent. South Univ. 30, 3656–3669 (2023). https://doi.org/10.1007/s11771-023-5483-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5483-5

Key words

关键词

Navigation