Skip to main content
Log in

Longitudinal and cross-sectional partitioned failure mechanism of tunnels subjected to stick-slip action of strike-slip faults

走滑断层黏滑作用下隧道纵向及横断面分区破坏机理

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Permanent displacement occurs in strike-slip faults due to stick-slip action, causing significant damage and distinct partitioning features in tunnels intersecting these faults. To elucidate the longitudinal and cross-sectional partitioned failure mechanism of tunnels and provide seismic design support for tunnels intersecting active faults, we investigated several seismic damage examples to summarize three tunnel failure modes: circumferential cracks, inclined cracks, and longitudinal cracks. The key influencing factors, such as fault type, intersection angle, fault dislocation, and tunnel stiffness, were identified and discussed. The results show the following. 1) The mechanical response and safety of tunnels are primarily influenced by fault type, while dip angle has a minimal impact; 2) Tunnels subject to left-lateral strike-slip faulting can be longitudinally divided into bending-compression-shear (L-BCS) and bending-compression (L-BC) zones, while those subject to right-lateral strike-slip faulting can be divided into bending-tension-shear (L-BTS) and bending-tension (L-BT) zones; 3) The range of the L-BCS and L-BTS zones is 1.4D–1.7D (D is the tunnel diameter), whereas the range of the L-BC and L-BT zones varies with key influencing factors; 4) The cross section of tunnels can be divided into eccentric-compression (C-EC) and eccentric-tension (C-ET) zones, which are susceptible to eccentric compression or eccentric tension failure. The C-EC and C-ET zones are approximately 5D away from the fault plane; 5) The C-EC zone of tunnels that traverse left-lateral strike-slip faults includes the left hance of the hanging wall, right hance of the footwall, tunnel crown, and tunnel invert, while the C-ET zone includes the left hance of the hanging wall and right hance of the footwall. In addition, the cross-sectional partitioning of a tunnel crossing a right-lateral strike-slip fault is symmetrical to that of a left-lateral fault.

摘要

黏滑作用下走滑断层将出现永久性的错动位移, 当隧道与此类断层相交时将发生严重破坏, 并 且具有明显的分区特征。为了揭示隧道纵向和横断面的分区破坏机理, 为穿越活动断裂带隧道抗震设 计提供支撑, 本文首先通过震害实例调研总结得到隧道的三种破坏模式, 即环向裂缝、斜向裂缝和纵 向裂缝。给出并讨论了断层类型、交角、错动量和隧道刚度等关键影响因素。结果表明:1)断层类型 是影响隧道力学响应和安全性的最显著因素, 而倾角影响很小; 2)受左旋走滑断层黏滑作用的隧道沿 纵向可分为弯曲-压缩-剪切(L-BCS)区和弯曲-压缩(L-BC)区, 而受右旋走滑断层黏滑作用的隧道可分为 弯曲-拉伸-剪切(L-BTS)区和弯曲-拉伸(L-BT)区; 3)L-BCS 区和L-BTS 区的范围为1.4D∼1.7D (D 为隧道 直径), 而L-BC 区和L-BT 区范围随关键影响因素变化而变化; 4)隧道横断面可分为偏心受压(C-EC)区 和偏心受拉(C-ET)区, 分别发生偏心受压破坏或偏心受拉破坏。C-EC 区和C-ET 区的范围约为距断层 面5D; 5)穿越左旋走滑断层隧道的C-EC 区包括上盘左拱腰、下盘右拱腰、拱顶和仰拱, C-ET 区包括 下盘左拱腰和上盘右拱腰。穿越右旋走滑断层隧道的横断面分区分布与左旋对称。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. KENNER S J, SEGALL P. Postseismic deformation following the 1906 San Francisco earthquake [J]. Journal of Geophysical Research: Solid Earth B, 2000, 105(6): 13195–13209. DOI: https://doi.org/10.1029/2000jb900076.

    Article  ADS  Google Scholar 

  2. WANG W L, WANG T T, SU J J, et al. Assessment of damage in mountain tunnels due to the Taiwan Chi-Chi Earthquake [J]. Tunnelling and Underground Space Technology, 2001, 16(3): 133–150. DOI: https://doi.org/10.1016/S0886-7798(01)00047-5.

    Article  Google Scholar 

  3. CUI Guang-yao, WANG Ming-nian, YU Li, et al. Study on the characteristics and mechanism of seismic damage for tunnel structures on fault rupture zone in Wenchuan seismic disastrous area [J]. China Civil Engineering Journal, 2013, 46(11): 122–147. (in Chinese)

    Google Scholar 

  4. CUI Guang-yao, WU Xiu-gang, WANG Ming-nian, et al. Earthquake damages and characteristics of highway tunnels in the 8.0-magnitude Wenchuan earthquake [J]. Modern Tunnelling Technology, 2017, 2(54): 9–16. DOI: https://doi.org/10.13807/j.cnki.mtt.2017.02.002. (in Chinese)

    Google Scholar 

  5. ZHANG Xue-peng, JIANG Yu-jing, SUGIMOTO S. Seismic damage assessment of mountain tunnel: A case study on the Tawarayama tunnel due to the 2016 Kumamoto Earthquake [J]. Tunnelling and Underground Space Technology, 2018, 71: 138–148. DOI: https://doi.org/10.1016/j.tust.2017.07.019.

    Article  Google Scholar 

  6. ZHANG Wei, LI Ming, JI Yun-ping, et al. Analysis and enlightenment of typical failure characteristics of tunnels caused by the Menyuan M6.9 earthquake in Qinghai Province [J]. China Earthquake Engineering Journal, 2022, 44(3): 661–669. DOI: https://doi.org/10.20000/j.1000-0844.20220304001. (in Chinese)

    Google Scholar 

  7. TIAN Si-ming, WU Ke-fei, YU Li, et al. Key technology of anti-seismic for railway tunnels crossing active fault zone [J] Tunnel construction, 2022, 42(8): 1351. (in Chinese)

    Google Scholar 

  8. ROJHANI M, MORADI M, GALANDARZADEH A, et al. Centrifuge modeling of buried continuous pipelines subjected to reverse faulting [J]. Canadian Geotechnical Journal, 2012, 49(6): 659–670. DOI: https://doi.org/10.1139/t2012-022.

    Article  Google Scholar 

  9. SABAGH M, GHALANDARZADEH A. Numerical modelings of continuous shallow tunnels subject to reverse faulting and its verification through a centrifuge [J]. Computers Geotechnics, 2020, 128: 103813.

    Article  Google Scholar 

  10. MILAD Z, MASOUD R, DANIEL D, et al. Performance of segmental and shotcrete linings in shallow tunnels crossing a transverse strike-slip faulting [J]. Transportation Geotechnics, 2020, 23: 100333. DOI: https://doi.org/10.1016/j.trgeo.2020.100333.

    Article  Google Scholar 

  11. ZHONG Zi-lan, WANG Zhen, ZHAO Mi, et al. Structural damage assessment of mountain tunnels in fault fracture zone subjected to multiple strike-slip fault movement [J]. Tunnelling and Underground Space Technology, 2020, 104: 103527. DOI: https://doi.org/10.1016/j.tust.2020.103527.

    Article  Google Scholar 

  12. BAZIAR M H, NABIZADEH A, KHALAFIAN N, et al. Evaluation of reverse faulting effects on the mechanical response of tunnel lining using centrifuge tests and numerical analysis [J]. Géotechnique, 2020, 70(6): 490–502. DOI: https://doi.org/10.1680/jgeot.18.p.019.

    Article  Google Scholar 

  13. KIANI M, AKHLAGHI T, GHALANDARZADEH A. Experimental modeling of segmental shallow tunnels in alluvial affected by normal faults [J]. Tunnelling and Underground Space Technology, 2016, 51: 108–119. DOI: https://doi.org/10.1016/j.tust.2015.10.005.

    Article  Google Scholar 

  14. KIANI M, GHALANDARZADEH A, AKHLAGHI T, et al. Experimental evaluation of vulnerability for urban segmental tunnels subjected to normal surface faulting [J]. Soil Dynamics and Earthquake Engineering, 2016, 89: 28–37. DOI: https://doi.org/10.1016/j.soildyn.2016.07.012.

    Article  Google Scholar 

  15. SABAGH M, GHALANDARZADEH A. Centrifugal modeling of continuous shallow tunnels at active normal faults intersection [J]. Transportation Geotechnics, 2020, 22: 100325. DOI: https://doi.org/10.1016/j.trgeo.2020.100325.

    Article  Google Scholar 

  16. ROY N, SARKAR R. A review of seismic damage of mountain tunnels and probable failure mechanisms [J]. Geotechnical and Geological Engineering, 2017, 35(1): 1–28. DOI: https://doi.org/10.1007/s10706-016-0091-x.

    Article  Google Scholar 

  17. ZHANG Pei-zhen, DENG Qi-dong, ZHANG Zhu-qi, et al. Active faults, earthquake hazards and associated geodynamic processes in continental China [J]. Scientia Sinica Terrae, 2013, 43(10): 1607–1620. (in Chinese)

    Google Scholar 

  18. LIU Xue-zeng, LI Xue-feng, SANG Yun-long, et al. Experimental study on normal fault rupture propagation in loose strata and its impact on mountain tunnels [J]. Tunnelling and Underground Space Technology, 2015, 49: 417–425. DOI: https://doi.org/10.1016/j.tust.2015.05.010.

    Article  Google Scholar 

  19. AHMADI M, MOOSAVI M, JAFARI M K. Experimental investigation of reverse fault rupture propagation through wet granular soil [J]. Engineering Geology, 2018, 239: 229–240. DOI: https://doi.org/10.1016/j.enggeo.2018.03.032.

    Article  Google Scholar 

  20. CAI Q P, PENG J M, NG C W W, et al. Centrifuge and numerical modelling of tunnel intersected by normal fault rupture in sand [J]. Computers and Geotechnics, 2019, 111: 137–146. DOI: https://doi.org/10.1016/j.compgeo.2019.03.010.

    Article  Google Scholar 

  21. TALI N, LASHKARIPOUR G R, HAFEZI MOGHADAS N, et al. Centrifuge modeling of reverse fault rupture propagation through single-layered and stratified soil [J]. Engineering Geology, 2019, 249: 273–289. DOI: https://doi.org/10.1016/j.enggeo.2018.12.021.

    Article  Google Scholar 

  22. LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Model experiment on effect of normal fault with 75° dip angle stickslip dislocation on highway tunnel [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8): 1714–1720. (in Chinese)

    CAS  Google Scholar 

  23. WANG Qiong, CHEN Gang, GUO En-dong, et al. Nonlinear analysis of tunnels under reversed fault [J]. Indian Geotechnical Journal, 2017, 47(2): 132–136. https://doi.org/10.1007/s40098-016-0219-1.

    Article  Google Scholar 

  24. LIU Xue-zeng, WANG Xu-lin, LIN Liang-lun. Model experimental study on influence of normal fault with 60° dip angle stick-slip dislocation on mountain tunnel [J]. China Civil Engineering Journal, 2014, 47: 121–128. (in Chinese)

    Google Scholar 

  25. AN Shao, TAO Lian-jin, BIAN Jin, et al. Damage analysis on subway tunnel structure under effect of reverse fault dislocation [J]. Journal of Hunan University(Natural Sciences), 2020, 47(7): 147–156. (in Chinese)

    Google Scholar 

  26. FAN Ling, CHEN Jie-ling, PENG Shu-quan, et al. Seismic response of tunnel under normal fault slips by shaking table test technique [J]. Journal of Central South University, 2020, 27(4): 1306–1319. DOI: https://doi.org/10.1007/s11771-020-4368-0.

    Article  Google Scholar 

  27. QIAO Ya-fei, TANG Jie, LIU Guo-zhao, et al. Longitudinal mechanical response of tunnels under active normal faulting [J]. Underground Space, 2022, 7(4): 662–679. DOI: https://doi.org/10.1016/j.undsp.2021.12.002.

    Article  Google Scholar 

  28. SHEN Y S, WANG Z Z, YU J, et al. Shaking table test on flexible joints of mountain tunnels passing through normal fault [J]. Tunnelling and Underground Space Technology, 2020, 98: 103299. DOI: https://doi.org/10.1016/j.tust.2020.103299.

    Article  Google Scholar 

  29. ZHOU Guang-xin, SHENG Qian, CUI Zhen, et al. Investigating the deformation and failure mechanism of a submarine tunnel with flexible joints subjected to strike-slip faults [J]. Journal of Marine Science and Engineering, 2021, 9(12): 1412. DOI: https://doi.org/10.3390/jmse9121412.

    Article  Google Scholar 

  30. LI Hong. Numerical simulation of coseismic surface deformation and stick-slip dislocation process of strike-slip fault [D]. Institute of Geology, China Earthquake Administration, 2018. (in Chinese)

  31. GREGOR T, GARROD B, YOUNG D. Analyses of underground structures crossing an active fault in Coronado, California [C]// Proceedings of the World Tunnel Congress 2007 and 33rd ITA/AITES Annual General Assembly. Berlin, Springer, 2007: 445–450.

    Google Scholar 

  32. ZAHERI M, RANJBARNIA M, DIAS D, et al. Performance of segmental and shotcrete linings in shallow tunnels crossing a transverse strike-slip faulting [J]. Transportation Geotechnics, 2020, 23: 100333. DOI: https://doi.org/10.1016/j.trgeo.2020.100333.

    Article  Google Scholar 

  33. MA Dan, DUAN Hong-yu, ZHANG Ji-xiong. Solid grain migration on hydraulic properties of fault rocks in underground mining tunnel: Radial seepage experiments and verification of permeability prediction [J]. Tunnelling and Underground Space Technology, 2022, 126: 104525. DOI: https://doi.org/10.1016/j.tust.2022.104525.

    Article  Google Scholar 

  34. MA Dan, DUAN Hong-yu, ZHANG Ji-xiong, et al. A state-of-the-art review on rock seepage mechanism of water inrush disaster in coal mines [J]. International Journal of Coal Science & Technology, 2022, 9(1): 1–28. DOI: https://doi.org/10.1007/s40789-022-00525-w.

    Article  ADS  CAS  Google Scholar 

  35. MA Dan, DUAN Hong-yu, ZHANG Ji-xiong, et al. Numerical simulation of water-silt inrush hazard of fault rock: A three-phase flow model [J]. Rock Mechanics and Rock Engineering, 2022, 55(8): 5163–5182. DOI: https://doi.org/10.1007/s00603-022-02878-9.

    Article  ADS  Google Scholar 

  36. PRENTICE C S, PONTI D J. Coseismic deformation of the Wrights tunnel during the 1906 San Francisco earthquake: A key to understanding 1906 fault slip and 1989 surface ruptures in the southern Santa Cruz Mountains, California [J]. Journal of Geophysical Research B, 1997, 102: 635–648. DOI: https://doi.org/10.1029/96jb02934.

    Article  ADS  Google Scholar 

  37. OWEN G, SCHOLL R. Earthquake engineering of large underground structures [R]. Washington DC: National Science Foundation, 1980.

    Google Scholar 

  38. BLANCHARD F, LAVERTY G. Displacements in the Claremont Water Tunnel at the intersection with the Hayward fault [J]. Bulletin of the Smological Society of America, 1966, 56(2): 291–294.

    Article  ADS  Google Scholar 

  39. KONAGAI K. Key points for rational design for civil-infrastructures near seismic faults reflecting soil-structure interaction features [M]. Engineering, Geology, Environmental Science, 2007.

  40. BÄCKBLOM G, MUNIER R. Effects of earthquakes on the deep repository for spent fuel in Sweden based on case studies and preliminary model results [R]. Stockholm: SKB Technical Report TR-02-24, Svensk Kärnbränslehantering AB, 2002.

    Google Scholar 

  41. DALGIÇ S. Tunneling in squeezing rock, the bolu tunnel, Anatolian motorway, Turkey [J]. Engineering Geology, 2002, 67(1–2): 73–96. DOI: https://doi.org/10.1016/S0013-7952(02)00146-1.

    Article  Google Scholar 

  42. SAINOKI A, MITRI H S. Effect of slip-weakening distance on selected seismic source parameters of mining-induced fault-slip [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 73: 115–122. DOI: https://doi.org/10.1016/j.ijrmms.2014.09.019.

    Article  Google Scholar 

  43. GB50010 2010. Code for design of concrete structures [S]. China Architecture &Building Press, 2010. (in Chinese)

  44. SHI Shi-sheng. Shear strength, modulus of rigidity and Young’s modulus of concrete [J]. China Civil Engineering Journal, 1999, 2: 47–52. (in Chinese)

    Google Scholar 

  45. WANG Tian-qiang, GENG Ping, LI Pei-song, et al. Deformation and failure of overburden soil subjected to normal fault dislocation and its impact on tunnel [J]. Engineering Failure Analysis, 2022, 142: 106747. DOI: https://doi.org/10.1016/j.engfailanal.2022.106747.

    Article  Google Scholar 

  46. WANG Qi, GENG Ping, LI Pei-song, et al. Failure analysis and dislocation-resistant design parameters of mining tunnel under normal faulting [J]. Engineering Failure Analysis, 2022, 143: 106902. DOI: https://doi.org/10.1016/j.engfailanal.2022.106902.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by YANG Heng-hong, WANG Mingnian, LUO Xun, YU Li, ZHANG Xiao, and TANG Lang-zhou. YANG Heng-hong, WANG Ming-nian, LUO Xun, and YU Li provided the model test data used in this paper. YANG Heng-hong, LUO Xun, ZHANG Xiao, and TANG Lang-zhou completed the numerical calculations and data analysis. The initial draft of the manuscript was written by YANG Henghong. WANG Ming-nian, LUO Xun, YU Li, ZHANG Xiao, and TANG Lang-zhou revised the errors of the initial draft. All authors replied to reviewers’ comments and revised the final version.

Corresponding authors

Correspondence to Xun Luo  (罗勋) or Li Yu  (于丽).

Ethics declarations

YANG Heng-hong, WANG Ming-nian, LUO Xun, YU Li, ZHANG Xiao, and TANG Lang-zhou declare that they have no conflict of interest.

Additional information

Foundation item: Projects(52378411, 52208404) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Hh., Wang, Mn., Luo, X. et al. Longitudinal and cross-sectional partitioned failure mechanism of tunnels subjected to stick-slip action of strike-slip faults. J. Cent. South Univ. 31, 250–271 (2024). https://doi.org/10.1007/s11771-023-5482-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5482-6

Key words

关键词

Navigation