Skip to main content
Log in

Experimental study on microscopic characteristics of liquid-cooled granite based on mercury injection method

基于注汞法的液冷花岗岩微观特性实验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

To study the effect of liquid cooling, including acid cooling and water cooling, on the microscopic characteristics of high-temperature granite, scanning electron microscopy and energy spectroscopy analysis tests (SEM-EDS) as well as mercury injection experiments were carried out on liquid-cooled granite. The SEM-EDS results show that the elemental composition is barely affected by water cooling, while acid cooling causes reductions in O, Si, and metallic elements. The pores and cracks were observed in both cases. Moreover, a more non-flat, loose, and rough surface is created under acid cooling conditions compared to water cooling. Mercury injection tests show an increase in porosity, pore volume, and specific surface area in liquid-cooled granite samples, while their fractal dimensions show an opposite trend. Acid cooling leads to significantly greater property changes than water cooling, owing to the dissolution effects of mud acid. The results demonstrate that the acid cooling process results in greater capacity of pore generation and expansion, as well as lower pore structure complexity, compared to water cooling.

摘要

在开采高温储层的过程中,微观特征变化重要影响深部热储层人工裂隙网络的建立。因此,研究该过程中微观特征的变化对深部地热能的安全高效开采具有重要意义。采用液体冷却(包括酸冷却和水冷却)处理高温花岗岩,模拟向高温储层注酸情况,以获取相应条件下的花岗岩试样。随后,使用扫描电子显微镜-能量散射谱(SEM-EDS)和高压注汞法对样品进行测试。SEM-EDS 结果显示,水冷却几乎不会影响元素的组成,酸冷却导致氧、硅和金属元素减少。在两种情况下,都观察到了孔隙和裂缝的形成。此外,与水冷却相比,酸冷却的样品表面更加不平整、疏松和粗糙。注汞法测试结果显示,随着处理温度的升高,液冷花岗岩样品的孔隙率、孔隙体积和比表面积有增加,但分形维数呈相反的趋势。研究结果表明,与水冷却相比,酸冷却条件对花岗岩的腐蚀作用使各项参数的变化更加显著,在酸冷却过程中产生更多的孔隙,提供更好的运输空间,使孔隙结构的复杂性降低。在高温储层的地热能有效提取方面,酸冷却具有更大应用潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. ZHUANG Deng-deng, YIN Tu-bing, LI Qiang, et al. Effect of injection flow rate on fracture toughness during hydraulic fracturing of hot dry rock (HDR) [J]. Engineering Fracture Mechanics, 2022, 260: 108207. DOI: https://doi.org/10.1016/j.engfracmech.2021.108207.

    Article  Google Scholar 

  2. ZHU Jia-ling, HU Kai-yong, LU Xin-li, et al. A review of geothermal energy resources, development, and applications in China: Current status and prospects [J]. Energy, 2015, 93: 466–483. DOI: https://doi.org/10.1016/j.energy.2015.08.098.

    Article  Google Scholar 

  3. CHEN Yun, MA Guo-wei, WANG Hui-dong, et al. Evaluation of geothermal development in fractured hot dry rock based on three dimensional unified pipe-network method [J]. Applied Thermal Engineering, 2018, 136: 219–228. DOI: https://doi.org/10.1016/j.applthermaleng.2018.03.008.

    Article  Google Scholar 

  4. WU Xing-hui, GUO Qi-feng, ZHU Yu, et al. Pore structure and crack characteristics in high-temperature granite under water-cooling [J]. Case Studies in Thermal Engineering, 2021, 28: 101646. DOI: https://doi.org/10.1016/j.csite.2021.101646.

    Article  Google Scholar 

  5. GU He-long, LAI Xing-ping, TAO Ming, et al. The role of porosity in the dynamic disturbance resistance of water-saturated coal [J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 166: 105388. DOI: https://doi.org/10.1016/j.ijrmms.2023.105388.

    Article  Google Scholar 

  6. KIM K, KEMENY J, NICKERSON M. Effect of rapid thermal cooling on mechanical rock properties [J]. Rock Mechanics and Rock Engineering, 2014, 47(6): 2005–2019. DOI: https://doi.org/10.1007/s00603-013-0523-3.

    Article  ADS  Google Scholar 

  7. KUMARI W G P, RANJITH P G, PERERA M S A, et al. Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments [J]. Engineering Geology, 2017, 229: 31–44. DOI: https://doi.org/10.1016/j.enggeo.2017.09.012.

    Article  Google Scholar 

  8. ISAKA B, GAMAGE R, RATHNAWEERA T, et al. An influence of thermally-induced micro-cracking under cooling treatments: Mechanical characteristics of Australian granite [J]. Energies, 2018, 11(6): 1338. DOI: https://doi.org/10.3390/en11061338.

    Article  Google Scholar 

  9. JIN Pei-hua, HU Yao-qing, SHAO Ji-xi, et al. Influence of different thermal cycling treatments on the physical, mechanical and transport properties of granite [J]. Geothermics, 2019, 78: 118–128. DOI: https://doi.org/10.1016/j.geothermics.2018.12.008.

    Article  ADS  Google Scholar 

  10. GAO Hong-mei, LAN Yong-wei, GUO Nan. Pore structural features of granite under different temperatures [J]. Materials, 2021, 14(21): 6470. DOI: https://doi.org/10.3390/ma14216470.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. YANG L, YANG D, ZHAO J, et al. Changes of oil shale pore structure and permeability at different temperatures [J]. Oil Shale, 2016, 33(2): 101. DOI: https://doi.org/10.3176/oil.2016.2.01.

    Article  MathSciNet  Google Scholar 

  12. LIU Zhi-jun, YANG Dong, HU Yao-qing, et al. Influence of in situ pyrolysis on the evolution of pore structure of oil shale [J]. Energies, 2018, 11(4): 755. DOI: https://doi.org/10.3390/en11040755.

    Article  Google Scholar 

  13. BAI Feng-tian, SUN You-hong, LIU Yu-min, et al. Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches [J]. Fuel, 2017, 187: 1–8. DOI: https://doi.org/10.1016/j.fuel.2016.09.012.

    Article  CAS  Google Scholar 

  14. GENG Yi-de, LIANG Wei-guo, LIU Jian, et al. Evolution of pore and fracture structure of oil shale under high temperature and high pressure [J]. Energy & Fuels, 2017, 31(10): 10404–10413. DOI: https://doi.org/10.1021/acs.energyfuels.7b01071.

    Article  CAS  Google Scholar 

  15. EKBERG J, GANVIR A, KLEMENT U, et al. The influence of heat treatments on the porosity of suspension plasmasprayed yttria-stabilized zirconia coatings [J]. Journal of Thermal Spray Technology, 2018, 27(3): 391–401. DOI: https://doi.org/10.1007/s11666-017-0682-y.

    Article  CAS  ADS  Google Scholar 

  16. FARQUHARSON J I, KUSHNIR A R L, WILD B, et al. Physical property evolution of granite during experimental chemical stimulation [J]. Geothermal Energy, 2020, 8(1): 1–24. DOI: https://doi.org/10.1186/s40517-020-00168-7.

    Article  Google Scholar 

  17. YIN Qian, JING Hong-wen, LIU Ri-cheng, et al. Pore characteristics and nonlinear flow behaviors of granite exposed to high temperature [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(3): 1239–1257. DOI: https://doi.org/10.1007/s10064-019-01628-6.

    Article  Google Scholar 

  18. ZHAO Yang-sheng, FENG Zi-jun, XI Bao-ping, et al. Deformation and instability failure of borehole at high temperature and high pressure in hot dry rock exploitation [J]. Renewable Energy, 2015, 77: 159–165. DOI: https://doi.org/10.1016/j.renene.2014.11.086.

    Article  Google Scholar 

  19. CAULK R A, GHAZANFARI E, PERDRIAL J N, et al. Experimental investigation of fracture aperture and permeability change within enhanced geothermal systems [J]. Geothermics, 2016, 62: 12–21. DOI: https://doi.org/10.1016/j.geothermics.2016.02.003.

    Article  ADS  Google Scholar 

  20. HOU Bing, ZHANG Ru-xin, CHEN Mian, et al. Investigation on acid fracturing treatment in limestone formation based on true tri-axial experiment [J]. Fuel, 2019, 235: 473–484. DOI: https://doi.org/10.1016/j.fuel.2018.08.057.

    Article  CAS  Google Scholar 

  21. GUO Tian-kui, LI Yan-chao, DING Yong, et al. Evaluation of acid fracturing treatments in shale formation [J]. Energy & Fuels, 2017, 31(10): 10479–10489. DOI: https://doi.org/10.1021/acs.energyfuels.7b01398.

    Article  CAS  Google Scholar 

  22. XU Jia-nan, FENG Bo, CUI Zhen-peng, et al. Comparative study of acid and alkaline stimulants with granite in an enhanced geothermal system [J]. Acta Geologica Sinica - English Edition, 2021, 95(6): 1926–1939. DOI: https://doi.org/10.1111/1755-6724.14870.

    Article  CAS  Google Scholar 

  23. XU Peng, SHENG Mao, LIN Tian-yi, et al. Influences of rock microstructure on acid dissolution at a dolomite surface [J]. Geothermics, 2022, 100: 102324. DOI: https://doi.org/10.1016/j.geothermics.2021.102324.

    Article  Google Scholar 

  24. TARIQ Z, ALJAWAD M S, MAHMOUD M, et al. Thermochemical acid fracturing of tight and unconventional rocks: Experimental and modeling investigations [J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103606. DOI: https://doi.org/10.1016/j.jngse.2020.103606.

    Article  CAS  Google Scholar 

  25. HAN Hui, GUO Chen, ZHONG Ning-ning, et al. A study on fractal characteristics of lacustrine shales of Qingshankou Formation in the Songliao Basin, northeast China using nitrogen adsorption and mercury injection methods [J]. Journal of Petroleum Science and Engineering, 2020, 193: 107378. DOI: https://doi.org/10.1016/j.petrol.2020.107378.

    Article  CAS  Google Scholar 

  26. KROHN C E, THOMPSON A H. Fractal sandstone pores: Automated measurements using scanning-electron-microscope images [J]. Physical Review B, 1986, 33(9): 6366–6374. DOI: https://doi.org/10.1103/physrevb.33.6366.

    Article  CAS  ADS  Google Scholar 

  27. ZENG Yu-chao, HE Bin, TANG Lian-sheng, et al. Numerical simulation of temperature field and pressure field of the fracture system at Zhangzhou geothermal field [J]. Environmental Earth Sciences, 2020, 79(11): 262. DOI: https://doi.org/10.1007/s12665-020-09018-y.

    Article  ADS  Google Scholar 

  28. ZHUANG Deng-deng, YIN Tu-bing, LI Qiang, et al. Fractal fracture toughness measurements of heat-treated granite using hydraulic fracturing under different injection flow rates [J]. Theoretical and Applied Fracture Mechanics, 2022, 119: 103340. DOI: https://doi.org/10.1016/j.tafmec.2022.103340.

    Article  Google Scholar 

  29. PORTIER S, VUATAZ F D, NAMI P, et al. Chemical stimulation techniques for geothermal wells: Experiments on the three-well EGS system at Soultz-sous-Forêts, France [J]. Geothermics, 2009, 38(4): 349–359. DOI: https://doi.org/10.1016/j.geothermics.2009.07.001.

    Article  CAS  ADS  Google Scholar 

  30. LI Qiang, LI Xi-bing, YIN Tu-bing. Factors affecting pore structure of granite under cyclic heating and cooling: A nuclear magnetic resonance investigation [J]. Geothermics, 2021, 96: 102198. DOI: https://doi.org/10.1016/j.geothermics.2021.102198.

    Article  Google Scholar 

  31. CUI Han-bo, TANG Ju-peng, JIANG Xin-tong. Effects of different conditions of water cooling at high temperature on the tensile strength and split surface roughness characteristics of hot dry rock [J]. Advances in Civil Engineering, 2020, 2020: 1–23. DOI: https://doi.org/10.1155/2020/8868140.

    Google Scholar 

  32. LIU Ze-lin, MA Chun-de, WEI Xin-ao. Electron scanning characteristics of rock materials under different loading methods: A review [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(2): 80. DOI: https://doi.org/10.1007/s40948-022-00392-4.

    Article  CAS  Google Scholar 

  33. WASHBURN E W. The dynamics of capillary flow [J]. Physical Review, 1921, 17(3): 273–283. DOI: https://doi.org/10.1103/physrev.17.273.

    Article  ADS  Google Scholar 

  34. SCHMITT RAHNER M, HALISCH M, PERES FERNANDES C, et al. Fractal dimensions of pore spaces in unconventional reservoir rocks using X-ray nano- and microcomputed tomography [J]. Journal of Natural Gas Science and Engineering, 2018, 55: 298–311. DOI: https://doi.org/10.1016/j.jngse.2018.05.011.

    Article  Google Scholar 

  35. CHENG Yu-gang, ZHANG Xue-fu, LU Zhao-hui, et al. The effect of subcritical and supercritical CO2 on the pore structure of bituminous coals [J]. Journal of Natural Gas Science and Engineering, 2021, 94: 104132. DOI: https://doi.org/10.1016/j.jngse.2021.104132.

    Article  CAS  Google Scholar 

  36. WANG Bin, LI Bo-bo, LI Jian-hua, et al. Measurement and modeling of coal adsorption-permeability based on the fractal method [J]. Journal of Natural Gas Science and Engineering, 2021, 88: 103824. DOI: https://doi.org/10.1016/j.jngse.2021.103824.

    Article  CAS  Google Scholar 

  37. LAI Jin, WANG Gui-wen. Fractal analysis of tight gas sandstones using high-pressure mercury intrusion techniques [J]. Journal of Natural Gas Science and Engineering, 2015, 24: 185–196. DOI: https://doi.org/10.1016/j.jngse.2015.03.027.

    Article  CAS  Google Scholar 

  38. HAN Wei-bo, ZHOU Gang, GAO Dan-hong, et al. Experimental analysis of the pore structure and fractal characteristics of different metamorphic coal based on mercury intrusion-nitrogen adsorption porosimetry [J]. Powder Technology, 2020, 362: 386–398. DOI: https://doi.org/10.1016/j.powtec.2

    Article  CAS  Google Scholar 

  39. LIU Kun-yan, ZHONG Xiu-ping, ZHU Ying, et al. Experimental study on the influence of acid-pressure compound effect on multi-scale pore evolution of oil shale [J]. Arabian Journal for Science and Engineering, 2022, 47(6): 7419–7432. DOI: https://doi.org/10.1007/s13369-022-06726-4.

    Article  CAS  Google Scholar 

  40. YAO Yan-bin, LIU Da-meng, TANG Da-zhen, et al. Fractal characterization of seepage-pores of coals from China: An investigation on permeability of coals [J]. Computers & Geosciences, 2009, 35(6): 1159–1166. DOI: https://doi.org/10.1016/j.cageo.2008.09.005.

    Article  CAS  ADS  Google Scholar 

  41. LIU Zhen, ZHU Dan-liang, YANG He, et al. Experimental research on different metamorphic grades of coal bodies with macro-mesoscopic structure fractal characteristics [J]. Geomechanics for Energy and the Environment, 2022, 32: 100337. DOI: https://doi.org/10.1016/j.gete.2022.100337.

    Article  Google Scholar 

  42. WANG Fu-yong, YANG Kun, YOU Jing-xi, et al. Analysis of pore size distribution and fractal dimension in tight sandstone with mercury intrusion porosimetry [J]. Results in Physics, 2019, 13: 102283. DOI: https://doi.org/10.1016/j.rinp.2019.102283.

    Article  Google Scholar 

  43. ZHAO Fei, SUN Qiang, ZHANG Wei-qiang. Fractal analysis of pore structure of granite after variable thermal cycles [J]. Environmental Earth Sciences, 2019, 78(24): 1–11. DOI: https://doi.org/10.1007/s12665-019-8703-4.

    Article  Google Scholar 

  44. FENG Bo, XU Jia-nan, XU Tian-fu, et al. Application and recent progresses of chemical stimulation on hot dry rock reservoir modification [J]. Journal of Earth Sciences and Environment, 2019, 41(5): 577–591. DOI: https://doi.org/10.3969/j.issn.1672-6561.2019.05.006.

    Google Scholar 

  45. TAKAHASHI R, WANG Jia-jie, WATANABE N. Process and optimum pH for permeability enhancement of fractured granite through selective mineral dissolution by chelating agent flooding [J]. Geothermics, 2023, 109: 102646. DOI: https://doi.org/10.1016/j.geothermics.2022.102646.

    Article  Google Scholar 

  46. WATANABE N, TAKAHASHI K, TAKAHASHI R, et al. Novel chemical stimulation for geothermal reservoirs by chelating agent driven selective mineral dissolution in fractured rocks [J]. Scientific Reports, 2021, 11: 19994. DOI: https://doi.org/10.1038/s41598-021-99511-6.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YIN Tu-bing provided funding and resources. ZHUANG Deng-deng contributed to investigation, validation, formal analysis, writing-review and editing. SU Ju-zhen contributed in writing-original draft, methodology, and data organization. LI Xi-bing guided the whole process.

Corresponding author

Correspondence to Deng-deng Zhuang  (庄登登).

Ethics declarations

YIN Tu-bing, SU Ju-zhen, ZHUANG Deng-deng and LI Xi-bing declare that they have no conflict of interest.

Additional information

Foundation item: Project(41972283) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Tb., Su, Jz., Zhuang, Dd. et al. Experimental study on microscopic characteristics of liquid-cooled granite based on mercury injection method. J. Cent. South Univ. 31, 169–181 (2024). https://doi.org/10.1007/s11771-023-5481-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5481-7

Key words

关键词

Navigation