Skip to main content
Log in

Characterization of microstructure and texture of lean duplex stainless steel 2101 produced by underwater laser wire direct energy deposition

水下激光填丝直接能量沉积法制备贫双相不锈钢2101 的组织和织构演变

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Lean duplex stainless steel 2101 (LDX 2101) is a promising material to replace 304 austenitic stainless steel in nuclear power plant in the future and it has been widely studied for its good economy, mechanical properties and corrosion resistance. Aiming at the underwater maintenance of nuclear power, the microstructure and texture evolution of laser wire direct energy deposition in underwater environment were studied by means of optical microscope and electron backscatter diffraction. The results show that the rapid cooling effect of underwater environment on the molten pool inhibits the transformation from ferrite to austenite. Since ferrites have the lowest surface energy, most of them were precipitated along the dense-packed (111)α and (110)α planes. The deposition structure shows typical cube texture and Goss texture. Although the texture of austenite is not as strong as that of ferrite passing through the deposition layer, the results show that the austenite phase was formed with a close Kurdjumov-Sachsorientation orientation relationship with respect to the ferrite phase. It is also found that the cyclic reheating effect of laser wire direct energy deposition not only changes the microstructure and texture, but also affects the grain size and the proportion of special grain boundaries. Improving the content and distribution uniformity of Σ3 grain boundary in the deposition structure is beneficial to improve the corrosion resistance.

摘要

贫双相不锈钢2101(LDX 2101)是一种可以替代304奥氏体不锈钢的低镍不锈钢材料,以良好的经济性、力学性能和耐腐蚀性而被广泛研究,在核电工程中具有广泛的应用前景。针对核电工程水下维修技术背景,利用光学显微镜和电子背散射衍射等方法,研究了水下环境激光填丝直接能量沉积工艺制备的贫双相不锈钢2101 的微观组织和织构演变。结果表明,水下环境对熔池的快速冷却作用抑制了铁素体向奥氏体的转变进程。由于铁素体的表面能最低,大多数铁素体是沿着密排堆积的(111)α 和(110)α 平面沉积的,沉积结构呈现典型的立方结构和高斯结构。尽管奥氏体的织构不如穿过沉积层的铁素体的织构强,但结果表明,奥氏体相相对于铁素体相形成了更紧密的Kurdjumov-Sachs 取向关系。 激光填丝直接能量沉积工艺的循环再加热效应不仅改变了贫双相不锈钢2101 的组织和织构,还影响了晶粒尺寸和特殊晶界的比例。提高沉积结构中Σ3 晶界的含量和分布均匀性,有利于增强沉积层的耐蚀性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. JOHNSON A B, BAILEY W J, SCHREIBER R E, et al. Spent fuel and fuel pool component integrity [R]. Richland, WA: Annual Report, 1979.

  2. KOMURA I. Nondestructive inspection technologies for the inservice inspection of nuclear power plant [J]. Journal of the Japan Institute of Energy, 2004, 83(7): 485–492.

    CAS  Google Scholar 

  3. ZHU Jia-lei, JIAO Xiang-dong. Applications of underwater laser welding in nuclear power plant maintenance [C]// 2011 Second International Conference on Mechanic Automation and Control Engineering. IEEE, 2011: 2947–2950. DOI: https://doi.org/10.1109/MACE.2011.5987606.

  4. WESTIN E M, OLSSON C O A, HERTZMAN S. Weld oxide formation on lean duplex stainless steel [J]. Corrosion Science, 2008, 50(9): 2620–2634. DOI: https://doi.org/10.1016/j.corsci.2008.06.024.

    Article  CAS  Google Scholar 

  5. PILHAGEN J, SANDSTRÖM R. Influence of nickel on the toughness of lean duplex stainless steel welds [J]. Materials Science and Engineering A, 2014, 602: 49–57. DOI: https://doi.org/10.1016/j.msea.2014.01.093.

    Article  CAS  Google Scholar 

  6. HOSSEINI V A, WESSMAN S, HURTIG K, et al. Nitrogen loss and effects on microstructure in multipass TIG welding of a super duplex stainless steel [J]. Materials & Design, 2016, 98: 88–97. DOI: https://doi.org/10.1016/j.matdes.2016.03.011.

    Article  CAS  Google Scholar 

  7. PANDEY C, THAKARE J G, TARAPHDAR P K, et al. Characterization of the soft zone in dissimilar welds joint of 2.25Cr−1Mo and lean duplex LDX2101 steel [J]. Fusion Engineering and Design, 2021, 163: 112147. DOI: https://doi.org/10.1016/j.fusengdes.2020.112147.

    Article  CAS  Google Scholar 

  8. LILJAS M, JOHANSSON P, LIU Hui-ping, et al. Development of a lean duplex stainless steel [J]. Steel Research International, 2008, 79(6): 466–473. DOI: https://doi.org/10.1002/srin.200806154.

    Article  CAS  Google Scholar 

  9. FENG Jie-cai, GUO Wei, FRANCIS J, et al. Narrow gap laser welding for potential nuclear pressure vessel manufacture [J]. Journal of Laser Applications, 2016, 28(2): 022421. DOI: https://doi.org/10.2351/1.4943905.

    Article  ADS  Google Scholar 

  10. HONG J, JOUNG C Y, KIM K H, et al. Study on fiber laser welding conditions for the fabrication of a nuclear fuel rod [J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(4): 777–781. DOI: https://doi.org/10.1007/s12541-014-0399-5.

    Article  Google Scholar 

  11. HINO T, TAMURA M, TANAKA Y, et al. Development of underwater laser cladding and underwater laser seal welding techniques for reactor components [J]. Journal of Power and Energy Systems, 2009, 3(1): 51–59. DOI: https://doi.org/10.1299/jpes.3.51.

    Article  ADS  Google Scholar 

  12. TAMURA M, KAWANO S, KOUNO W, et al. Development of underwater laser cladding and underwater laser seal welding techniques for reactor components (II) [C]//Proceedings of 14th International Conference on Nuclear Engineering. Miami, Florida, USA, 2008: 491–494. DOI: https://doi.org/10.1115/ICONE14-89346.

  13. FU Yun-long, GUO Ning, WANG Guang-hui, et al. Underwater additive manufacturing of Ti−6Al−4V alloy by laser metal deposition: Formability, gran growth and microstructure evolution [J]. Materials & Design, 2021, 197: 109196. DOI: https://doi.org/10.1016/j.matdes.2020.109196.

    Article  CAS  Google Scholar 

  14. GUO Ning, WU Di, YU Meng-qiu, et al. Microstructure and properties of Ti−6Al−4V titanium alloy prepared by underwater wire feeding laser deposition [J]. Journal of Manufacturing Processes, 2022, 73: 269–278. DOI: https://doi.org/10.1016/j.jmapro.2021.11.002.

    Article  Google Scholar 

  15. FU Yun-long, GUO Ning, ZHOU Cheng, et al. Investigation on in situ laser cladding coating of the 304 stainless steel in water environment [J]. Journal of Materials Processing Technology, 2021, 289: 116949. DOI: https://doi.org/10.1016/j.jmatprotec.2020.116949.

    Article  CAS  Google Scholar 

  16. GUO Ning, CHENG Qi, FU Yun-long, et al. Microstructure and microhardness of aluminium alloy with underwater and in-air wire-feed laser deposition [J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(4): 670–677. DOI: https://doi.org/10.1007/s12613-022-2500-x.

    Article  ADS  CAS  Google Scholar 

  17. WANG Z D, SUN G F, CHEN M Z, et al. Investigation of the underwater laser directed energy deposition technique for the on-site repair of HSLA-100 steel with excellent performance [J]. Additive Manufacturing, 2021, 39: 101884. DOI: https://doi.org/10.1016/j.addma.2021.101884.

    Article  CAS  Google Scholar 

  18. LIU Yi, LI Cheng-xin, HUANG Xiao-fang, et al. Investigation on solidification structure and temperature field with novel processing of synchronous powder-feeding underwater laser cladding [J]. Journal of Materials Processing Technology, 2021, 296: 117166. DOI: https://doi.org/10.1016/j.jmatprotec.2021.117166.

    Article  CAS  Google Scholar 

  19. FENG Xiang-ru, CUI Xiu-fang, ZHENG Wei, et al. Performance of underwater laser cladded nickel aluminum bronze by applying zinc protective layer and titanium additives [J]. Journal of Materials Processing Technology, 2019, 266: 544–550. DOI: https://doi.org/10.1016/j.jmatprotec.2018.11.036.

    Article  CAS  Google Scholar 

  20. SUN Gui-fang, WANG Zhan-dong, LU Yi, et al. Underwater laser welding/cladding for high-performance repair of marine metal materials: A review [J]. Chinese Journal of Mechanical Engineering, 2022, 35(1): 1–19. DOI: https://doi.org/10.1186/s10033-021-00674-0.

    Article  ADS  Google Scholar 

  21. ŁABANOWSKI J, FYDRYCH D, ROGALSKI G, et al. Underwater welding of duplex stainless steel [J]. Solid State Phenomena, 2011, 183: 101–106. DOI: https://doi.org/10.4028/www.scientific.net/ssp.183.101.

    Article  Google Scholar 

  22. HU Yu, SHI Yong-hua, SUN Kun, et al. Microstructure evolution and mechanical performance of underwater local dry welded DSS metals at various simulated water depths [J]. Journal of Materials Processing Technology, 2019, 264: 366–376. DOI: https://doi.org/10.1016/j.jmatprotec.2018.09.023.

    Article  CAS  Google Scholar 

  23. SARAVANAN S, SIVAGURUMANIKANDAN N, RAGHUKANDAN K. Effect of process parameters in microstructural and mechanical properties of Nd: YAG laser welded super duplex stainless steel [J]. Materials Today: Proceedings, 2021, 39: 1248–1253. DOI: https://doi.org/10.1016/j.matpr.2020.04.101.

    CAS  Google Scholar 

  24. LI Cong-wei, ZHU Jia-lei, CAI Zhi-hai, et al. Microstructure and corrosion resistance of underwater laser cladded duplex stainless steel coating after underwater laser remelting processing [J]. Materials, 2021, 14(17): 4965. DOI: https://doi.org/10.3390/ma14174965.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. WANG Kai, SHAO Chang-lei, JIAO Xiang-dong, et al. Investigation on microstructure and properties of duplex stainless steel welds by underwater laser welding with different shielding gas [J]. Materials, 2021, 14(17): 4774. DOI: https://doi.org/10.3390/ma14174774.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. BADJI R, BACROIX B, BOUABDALLAH M. Texture, microstructure and anisotropic properties in annealed 2205 duplex stainless steel welds [J]. Materials Characterization, 2011, 62(9): 833–843. DOI: https://doi.org/10.1016/j.matchar.2011.06.001.

    Article  CAS  Google Scholar 

  27. HIRSCH J, LUCKE K, HATHERLY M. Mechanism of deformation and development of rolling textures in polycrystalline F. C. C. metals. I- Description of rolling texture development in homogeneous Cu−Zn Alloys [J]. Acta Metallurgica, 1988, 36(11): 2905–2927. DOI: https://doi.org/10.1016/0001-6160(88)90172-1.

    Article  CAS  Google Scholar 

  28. RAY R K. Rolling textures of pure nickel, nickel-iron and nickel-cobalt alloys [J]. Acta Metallurgica et Materialia, 1995, 43(10): 3861–3872. DOI: https://doi.org/10.1016/0956-7151(95)90169-8.

    Article  CAS  Google Scholar 

  29. VERCAMMEN S, BLANPAIN B, DE COOMAN B C, et al. Cold rolling behaviour of an austenitic Fe−30Mn−3Al−3Si TWIP-steel: The importance of deformation twinning [J]. Acta Materialia, 2004, 52(7): 2005–2012. DOI: https://doi.org/10.1016/j.actamat.2003.12.040.

    Article  ADS  CAS  Google Scholar 

  30. ZHANG Yuan-xiang, XU Yun-bo, LIU Hai-tao, et al. Microstructure, texture and magnetic properties of strip-cast 1.3% Si non-oriented electrical steels [J]. Journal of Magnetism and Magnetic Materials, 2012, 324(20): 3328–3333. DOI: https://doi.org/10.1016/j.jmmm.2012.05.046.

    Article  ADS  CAS  Google Scholar 

  31. XU Y B, ZHANG Y X, WANG Y, et al. Evolution of cube texture in strip-cast non-oriented silicon steels [J]. Scripta Materialia, 2014, 87: 17–20. DOI: https://doi.org/10.1016/j.scriptamat.2014.05.019.

    Article  CAS  Google Scholar 

  32. LEHOCKEY E M, BRENNENSTUHL A M, THOMPSON I. On the relationship between grain boundary connectivity, coincident site lattice boundaries, and intergranular stress corrosion cracking [J]. Corrosion Science, 2004, 46(10): 2383–2404. DOI: https://doi.org/10.1016/j.corsci.2004.01.019.

    Article  CAS  Google Scholar 

  33. WANG Kai, JIAO Xiang-dong, ZHU Jia-lei, et al. Effect of nitrogen protection on weld metal microstructure and intergranular behavior of S32101 duplex stainless steel 15 m water depth hyperbaric laser underwater welding [J]. Advances in Mechanical Engineering, 2022, 14(1): 168781402110729. DOI: https://doi.org/10.1177/16878140211072943.

    Article  Google Scholar 

  34. MICHIUCHI M, KOKAWA H, WANG Z J, et al. Twin-induced grain boundary engineering for 316 austenitic stainless steel [J]. Acta Materialia, 2006, 54(19): 5179–5184. DOI: https://doi.org/10.1016/j.actamat.2006.06.030.

    Article  ADS  CAS  Google Scholar 

  35. EGHLIMI A, SHAMANIAN M, ESKANDARIAN M, et al. Evaluation of microstructure and texture across the welded interface of super duplex stainless steel and high strength low alloy steel [J]. Surface and Coatings Technology, 2015, 264: 150–162. DOI: https://doi.org/10.1016/j.surfcoat.2014.12.060.

    Article  CAS  Google Scholar 

  36. RAULT V, VIGNAL V, KRAWIEC H, et al. Quantitative assessment of local misorientations and pitting corrosion behaviour of pearlitic steel using electron backscattered diffraction and microcapillary techniques [J]. Corrosion Science, 2015, 100: 667–671. DOI: https://doi.org/10.1016/j.corsci.2015.08.002.

    Article  CAS  Google Scholar 

  37. RANDLE V. Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials [J]. Acta Materialia, 1999, 47(15–16): 4187–4196. DOI: https://doi.org/10.1016/S1359-6454(99)00277-3.

    Article  ADS  CAS  Google Scholar 

  38. EGHLIMI A, SHAMANIAN M, ESKANDARIAN M, et al. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal [J]. Materials Characterization, 2015, 106: 208–217. DOI: https://doi.org/10.1016/j.matchar.2015.05.036.

    Article  CAS  Google Scholar 

  39. KOBAYASHI S, KOBAYASHI R, WATANABE T. Control of grain boundary connectivity based on fractal analysis for improvement of intergranular corrosion resistance in SUS316L austenitic stainless steel [J]. Acta Materialia, 2016, 102: 397–405. DOI: https://doi.org/10.1016/j.actamat.2015.08.075.

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CAI Zhi-hai: Funding acquisition; WANG Kai: Methodology, writing original draft; ZHU Jia-lei: Funding acquisition and project administration; JIAO Xiang-dong: Conceptualization and methodology; DU Xian: Formal analysis; WANG Hai-dou: Preparation, and/or presentation of the published work.

Corresponding authors

Correspondence to Kai Wang  (王凯) or Jia-lei Zhu  (朱加雷).

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Foundation item: Project(52130509) supported by the National Natural Science Foundation, China; Project(BIPTACF-010) supported by the Cultivation Foundation from Beijing Institute of Petrochemical Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Zh., Wang, K., Zhu, Jl. et al. Characterization of microstructure and texture of lean duplex stainless steel 2101 produced by underwater laser wire direct energy deposition. J. Cent. South Univ. 31, 72–83 (2024). https://doi.org/10.1007/s11771-023-5477-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5477-3

Key words

关键词

Navigation