Skip to main content
Log in

Interface characteristics and mechanical properties of titanium/aluminum composites with an interlayer fabricated by explosive welding

含夹层钛/铝爆炸焊接复合材料的界面特征及力学性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this work, the interface morphology and element distribution of the TC1/AA1060/AA6061 composite plate were studied. The grain information was investigated by electron backscattered diffraction and interface temperature was obtained by numerical simulation to explain the grain information. The experimental samples were tested by mechanical methods. The results show that the TC1/AA1060/AA6061 composite plate has better welding quality by observing interface morphology and testing mechanical properties. The morphology of the two interfaces was consistent with the simulation results, and the interface temperature can be explained by the grain information at interfaces and vortex regions. The diffusion width of elements at the TC1/AA1060 interface was 12.3 µm and no intermetallic compounds were detected; Only Al and O element were detected in two vortex regions. In addition, nanoindentation test was performed at different regions and the results were discussed.

摘要

通过爆炸焊接技术制备了含夹层的TC1/AA1060/AA6061复合材料,并对界面形貌和界面元素分布进行了研究。通过电子背散射衍射方法研究界面晶粒分布,并通过数值模拟得到的界面温度来解释晶粒分布。通过力学性能试验得到复合材料的拉伸和剪切力学性能。界面微观组织结构和力学性能的测试结果表明:TC1/AA1060/AA6061 复合材料具有较好的焊接质量。两个界面形貌与数值模拟结果一致,数值模拟得到的界面温度可以解释界面和涡旋区域的晶粒分布。元素在TC1/AA1060 界面的扩散宽度为12.3 µm,未检测到金属间化合物。在两个涡流区只检测到Al 和O元素。此外,还在界面附近不同区域进行了纳米压痕试验,TC1/AA1060 界面的纳米硬度介于两侧材料之间,而AA1060/AA6061界面的纳米硬度小于两侧材料。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. ZHANG Lin-jie, WANG Chen-hong, ZHANG Yan-bin, et al. The mechanical properties and interface bonding mechanism of Molybdenum/SUS304L by laser beam welding with nickel interlayer [J]. Materials & Design, 2019, 182: 108002. DOI: https://doi.org/10.1016/j.matdes.2019.108002.

    Article  CAS  Google Scholar 

  2. LI Yu-long, LIU Yan-ru, YANG Jin. First principle calculations and mechanical properties of the intermetallic compounds in a laser welded steel/aluminum joint [J]. Optics & Laser Technology, 2020, 122: 105875. DOI: https://doi.org/10.1016/j.optlastec.2019.105875.

    Article  CAS  Google Scholar 

  3. PAUL H, CHULIST R, LITYŃSKA-DOBRZYŃSKA L, et al. Interfacial reactions and microstructure related properties of explosively welded tantalum and steel sheets with copper interlayer [J]. Materials & Design, 2021, 208: 109873. DOI: https://doi.org/10.1016/j.matdes.2021.109873.

    Article  CAS  Google Scholar 

  4. CARVALHO G H S F L, GALVÃO I, MENDES R, et al. Explosive welding of aluminium to stainless steel using carbon steel and niobium interlayers [J]. Journal of Materials Processing Technology, 2020, 283: 116707. DOI: https://doi.org/10.1016/j.jmatprotec.2020.116707.

    Article  CAS  Google Scholar 

  5. WANG Hui-min, WANG Yu-liang. High-velocity impact welding process: A review [J]. Metals, 2019, 9(2): 144. DOI: https://doi.org/10.3390/met9020144.

    Article  CAS  Google Scholar 

  6. FINDIK F. Recent developments in explosive welding [J]. Materials & Design, 2011, 32(3): 1081–1093. DOI: https://doi.org/10.1016/j.matdes.2010.10.017.

    Article  MathSciNet  CAS  Google Scholar 

  7. SARAVANAN S, RAGHUKANDAN K, KUMAR P. Effect of wire mesh interlayer in explosive cladding of dissimilar grade aluminum plates [J]. Journal of Central South University, 2019, 26(3): 604–611. DOI: https://doi.org/10.1007/s11771-019-4031-9.

    Article  CAS  Google Scholar 

  8. ELANGO E, SARAVANAN S, RAGHUKANDAN K. Experimental and numerical studies on aluminum-stainless steel explosive cladding [J]. Journal of Central South University, 2020, 27: 1742–1753. DOI: https://doi.org/10.1007/s11771-020-4404-0.

    Article  CAS  Google Scholar 

  9. KHANZADEH GHARAHSHIRAN M R, KHOSHAKHLAGH A, KHALAJ G, et al. Effect of postweld heat treatment on interface microstructure and metallurgical properties of explosively welded bronze—Carbon steel [J]. Journal of Central South University, 2018, 25(8): 1849–1861. DOI: https://doi.org/10.1007/s11771-018-3874-9.

    Article  CAS  Google Scholar 

  10. SOMASUNDARAM S, KRISHNAMURTHY R, KAZUYUKI H. Effect of process parameters on microstructural and mechanical properties of Ti − SS 304L explosive cladding [J]. Journal of Central South University, 2017, 24(6): 1245–1251. DOI: https://doi.org/10.1007/s11771-017-3528-3.

    Article  CAS  Google Scholar 

  11. BATAEV I A, TANAKA S, ZHOU Q, et al. Towards better understanding of explosive welding by combination of numerical simulation and experimental study [J]. Materials & Design, 2019, 169: 107649. DOI: https://doi.org/10.1016/j.matdes.2019.107649.

    Article  CAS  Google Scholar 

  12. MENDES R, RIBEIRO J B, LOUREIRO A. Effect of explosive characteristics on the explosive welding of stainless steel to carbon steel in cylindrical configuration [J]. Materials & Design, 2013, 51: 182–192. DOI: https://doi.org/10.1016/j.matdes.2013.03.069.

    Article  CAS  Google Scholar 

  13. ZHANG Ting-ting, WANG Wen-xian, YAN Zhi-feng, et al. Interfacial morphology and bonding mechanism of explosive weld joints [J]. Chinese Journal of Mechanical Engineering, 2021, 34(1): 1–12. DOI: https://doi.org/10.1186/s10033-020-00495-7.

    Article  ADS  CAS  Google Scholar 

  14. MIAO Yu-song, CHEN Xiang, WANG Hai-liang. Some applications of interlayer explosive welding [J]. Composite Interfaces, 2022, 29(4): 345–360. DOI: https://doi.org/10.1080/09276440.2021.1943142.

    Article  ADS  CAS  Google Scholar 

  15. COMMITTEE A S F M. Welding, brazing and soldering [M]// Metals Handbook. Vol. 6. Metals Park, Ohio: American Society for Metals, 1983.

    Google Scholar 

  16. CARVALHO G H S F L, GALVÃO I, MENDES R, et al. Microstructure and mechanical behaviour of aluminiumcarbon steel and aluminium-stainless steel clads produced with an aluminium interlayer [J]. Materials Characterization, 2019, 155: 109819. DOI: https://doi.org/10.1016/j.matchar.2019.109819.

    Article  CAS  Google Scholar 

  17. FANG Zhong-hang, SHI Chang-gen, SUN Ze-rui, et al. Influence of interlayer technique on microstructure and mechanical properties of Ti/Al cladding plate manufactured via explosive welding [J]. Materials Research Express, 2019, 6(10): 1065f9. DOI: https://doi.org/10.1088/2053-1591/ab42ac.

    Article  CAS  Google Scholar 

  18. CHEN Xiang, LI Xiao-jie, INAO D, et al. Study of explosive welding of A6061/SUS821L1 using interlayers with different thicknesses and the air shockwave between plates [J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(11): 3779–3794. DOI: https://doi.org/10.1007/s00170-021-07755-3

    Google Scholar 

  19. HAN J H, AHN J P, SHIN M C. Effect of interlayer thickness on shear deformation behavior of AA5083 aluminum alloy/SS41 steel plates manufactured by explosive welding [J]. Journal of Materials Science, 2003, 38(1): 13–18. DOI: https://doi.org/10.1023/A:1021197328946.

    Article  ADS  CAS  Google Scholar 

  20. MANIKANDAN P, HOKAMOTO K, FUJITA M, et al. Control of energetic conditions by employing interlayer of different thickness for explosive welding of titanium/304 stainless steel [J]. Journal of Materials Processing Technology, 2008, 195(1–3): 232–240. DOI: https://doi.org/10.1016/j.jmatprotec.2007.05.002.

    Article  CAS  Google Scholar 

  21. PETRZAK P, MANIA I, PAUL H, et al. The kinetic of Al3Ti phase growth in explosively welded multilayered Al/Ti clads during annealing under load conditions [J]. Archives of Metallurgy and Materials, 2019, 64: 1549–1554.

    Article  CAS  Google Scholar 

  22. LAZURENKO D V, BATAEV I A, MALI V I, et al. Explosively welded multilayer Ti-Al composites: Structure and transformation during heat treatment [J]. Materials & Design, 2016, 102: 122–130. DOI: https://doi.org/10.1016/j.matdes.2016.04.037.

    Article  CAS  Google Scholar 

  23. BATAEV I A, BATAEV A A, MALI V I, et al. Structural and mechanical properties of metallic-intermetallic laminate composites produced by explosive welding and annealing [J]. Materials & Design, 2012, 35: 225–234. DOI: https://doi.org/10.1016/j.matdes.2011.09.030.

    Article  CAS  Google Scholar 

  24. PRICE R D, JIANG Feng-chun, KULIN R M, et al. Effects of ductile phase volume fraction on the mechanical properties of Ti−Al3Ti metal-intermetallic laminate (MIL) composites [J]. Materials Science and Engineering A, 2011, 528(7–8): 3134–3146. DOI: https://doi.org/10.1016/j.msea.2010.12.087.

    Article  Google Scholar 

  25. MAHMOOD Y, DAI Kai-da, CHEN Peng-wan, et al. Experimental and numerical study on microstructure and mechanical properties of Ti−6Al−4V/Al−1060 explosive welding [J]. Metals, 2019, 9(11): 1189. DOI: https://doi.org/10.3390/met9111189.

    Article  CAS  Google Scholar 

  26. EGE E S, INAL O T, ZIMMERLY C A. Response surface study on production of explosively-welded aluminum-titanium laminates [J]. Journal of Materials Science, 1998, 33(22): 5327–5338. DOI: https://doi.org/10.1023/A:1004485914302.

    Article  ADS  CAS  Google Scholar 

  27. WU Xiao-ming, SHI Chang-gen, FANG Zhong-hang, et al. Comparative study on welding energy and Interface characteristics of titanium-aluminum explosive composites with and without interlayer [J]. Materials & Design, 2021, 197: 109279. DOI: https://doi.org/10.1016/j.matdes.2020.109279.

    Article  CAS  Google Scholar 

  28. SUN Ze-rui, SHI Chang-gen, SHI Hang, et al. Comparative study of energy distribution and interface morphology in parallel and double vertical explosive welding by numerical simulations and experiments [J]. Materials & Design, 2020, 195: 109027. DOI: https://doi.org/10.1016/j.matdes.2020.109027.

    Article  CAS  Google Scholar 

  29. YUAN Jia-xin, SHAO Fei, BAI Lin-yue, et al. Interface investigation of Ti/Al explosively welded composites with 1060 interlayer: Morphology, formation, and development [J]. Composite Interfaces, 2023, 30(2): 201–222. DOI: https://doi.org/10.1080/09276440.2022.2094569.

    Article  ADS  CAS  Google Scholar 

  30. YANG Ming, XU Jun-feng, MA Hong-hao, et al. Microstructure development during explosive welding of metal foil: Morphologies, mechanical behaviors and mechanisms [J]. Composites Part B: Engineering, 2021, 212: 108685. DOI: https://doi.org/10.1016/j.compositesb.2021.108685.

    Article  CAS  Google Scholar 

  31. LI Yan, WU Zhi-sheng. Microstructural characteristics and mechanical properties of 2205/AZ31B laminates fabricated by explosive welding [J]. Metals, 2017, 7(4): 125. DOI: https://doi.org/10.3390/met7040125.

    Article  Google Scholar 

  32. SUN Ze-rui, SHI Chang-gen, XU Fei, et al. Detonation process analysis and interface morphology distribution of double vertical explosive welding by SPH 2D/3D numerical simulation and experiment [J]. Materials & Design, 2020, 191: 108630. DOI: https://doi.org/10.1016/j.matdes.2020.108630.

    Article  Google Scholar 

  33. YANG Ming, XU Jun-feng, CHEN Dai-guo, et al. Understanding interface evolution during explosive welding of silver foil and Q235 substrate through experimental observation coupled with simulation [J]. Applied Surface Science, 2021, 566: 150703. DOI: https://doi.org/10.1016/j.apsusc.2021.150703.

    Article  CAS  Google Scholar 

  34. LI Yu-long, CHU Zheng-hui, LI Xue-wen, et al. Swirl-like Cu-Sn phase formation and the effects on the ultrasonic spot welded joint of Sn-coated Cu plates [J]. Journal of Materials Processing Technology, 2021, 288: 116911. DOI: https://doi.org/10.1016/j.jmatprotec.2020.116911.

    Article  CAS  Google Scholar 

  35. LI Jing, GAO Hai-tao, KONG C, et al. Insight into the bonding mechanism in Cu/Al/Cu clad sheets via introduction of thin SUS304 interlayer [J]. Journal of Materials Research and Technology, 2022, 21: 4619–4635. DOI: https://doi.org/10.1016/j.jmrt.2022.11.076.

    Article  CAS  Google Scholar 

  36. PEI Yan-bo, HUANG Tao, CHEN Fu-xiao, et al. Microstructure and fracture mechanism of Ti/Al layered composite fabricated by explosive welding [J]. Vacuum, 2020, 181: 109596. DOI: https://doi.org/10.1016/j.vacuum.2020.109596.

    Article  ADS  CAS  Google Scholar 

  37. FANG Zhong-hang, SHI Chang-gen, SHI He-sheng, et al. Influence of explosive ratio on morphological and structural properties of Ti/Al clads [J]. Metals, 2019, 9(2): 119. DOI: https://doi.org/10.3390/met9020119.

    Article  CAS  Google Scholar 

  38. ZHANG Ting-ting, WANG Wen-xian, ZHOU Jun, et al. Interfacial characteristics and nano-mechanical properties of dissimilar 304 austenitic stainless steel/AZ31B Mg alloy welding joint [J]. Journal of Manufacturing Processes, 2019, 42: 257–265. DOI: https://doi.org/10.1016/j.jmapro.2019.04.031.

    Article  Google Scholar 

  39. YANG Ming, MA Hong-hao, SHEN Zhao-wu, et al. Dissimilar material welding of tantalum foil and Q235 steel plate using improved explosive welding technique [J]. Materials & Design, 2020, 186: 108348. DOI: https://doi.org/10.1016/j.matdes.2019.108348.

    Article  CAS  Google Scholar 

  40. FOADIAN F, SOLTANIEH M, ADELI M, et al. A study on the formation of intermetallics during the heat treatment of explosively welded Al−Ti multilayers [J]. Metallurgical and Materials Transactions A, 2014, 45(4): 1823–1832. DOI: https://doi.org/10.1007/s11661-013-2144-6.

    Article  ADS  CAS  Google Scholar 

  41. JONAS J J, QUELENNEC X, JIANG Lan, et al. The Avrami kinetics of dynamic recrystallization [J]. Acta Materialia, 2009, 57(9): 2748–2756. DOI: https://doi.org/10.1016/j.actamat.2009.02.033.

    Article  ADS  CAS  Google Scholar 

  42. GLOC M, WACHOWSKI M, PLOCINSKI T, et al. Microstructural and microanalysis investigations of bond titanium grade1/low alloy steel st52-3N obtained by explosive welding [J]. Journal of Alloys and Compounds, 2016, 671: 446–451. DOI: https://doi.org/10.1016/j.jallcom.2016.02.120.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YUAN Jia-xin led data processing and analysis, and writing of the original draft. SHAO Fei and BAI Lin-yue contributed to the conceptualization, methodology, supervision. ZHANG Hong-wei, XU Qian and GAO Lei conducted data processing and analysis. XIE Xing-kun and PAN Yu played a role in the experimental methodology and supervision.

Corresponding authors

Correspondence to Fei Shao  (邵飞) or Lin-yue Bai  (白林越).

Ethics declarations

The authors declare that there are no conflicts of interest.

Additional information

Foundation item: Project(LJ20212C021198) supported by the Equipment Research Project, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Jx., Shao, F., Bai, Ly. et al. Interface characteristics and mechanical properties of titanium/aluminum composites with an interlayer fabricated by explosive welding. J. Cent. South Univ. 31, 43–58 (2024). https://doi.org/10.1007/s11771-023-5476-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5476-4

Key words

关键词

Navigation