Skip to main content
Log in

An efficient parallel computing method for random vibration analysis of a three-dimensional train-track-soil coupled model using Seed-PCG algorithm

基于Seed-PCG法的列车-轨道-地基土三维随机振动GPU并行计算方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This study proposes an efficient parallel computation method based on Seed-preconditioned Conjugate Gradient (Seed-PCG) algorithm, to address the issue of computational inefficiency of random multi-sample in three-dimensional (3D) finite element (FE) model of train-track-soil. A 3D train-track-soil coupled random vibration analysis model is established using the finite element method (FEM) and the pseudo-excitation method (PEM) under track irregularity excitation. The Seed-PCG method is utilized to solve the system of linear equations with multiple right-hand sides arising from the random analysis of the vehicle-induced ground vibration. Furthermore, by projecting the Krylov subspace obtained from solving the seed system by the PCG method, the initial solution of the remaining linear equation systems and the corresponding initial residuals are improved, leading to an effective enhancement of the convergence speed of the PCG method. Finally, the parallel computing program is developed on a hybrid MATLAB-Compute Unified Device Architecture (CUDA) platform. Numerical examples demonstrate the effectiveness of the proposed method. It achieves 104.2 times acceleration compared with the multi-point synchronization algorithm (MPSA) proposed by author ZHU under the same computing platform. Moreover, compared with the PCG method, the number of iterations is reduced by 18 % and the acceleration is increased by 1.21 times.

摘要

为了解决列车-轨道-地基土三维有限元模型随机多样本计算效率低的问题,本文提出了一种基 于Seed-PCG 法的高效并行计算方法。基于有限元法和虚拟激励法建立轨道不平顺激励下的三维列车-轨道-地基土耦合随机振动分析模型;针对车致地基土随机振动分析产生的多右端项线性方程组求解问 题,采用Seed-PCG 方法进行求解。通过PCG方法求解种子系统得到的Krylov 子空间进行投影,以改 进其余线性方程组的初始解和对应的初始残量,有效提高了PCG法的收敛速度,最后,在MATLABCUDA 混合平台上开发了并行计算程序。数值算例表明:相同计算平台下的该方法相比多点同步算法 获得了104.2 倍的加速;相比PCG法逐个求解方案减少了18%的迭代次数,获得了1.21 倍的加速。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. HU J, BIAN X. Experimental and numerical studies on dynamic responses of tunnel and soils due to train traffic loads [J]. Tunnelling and Underground Space Technology, 2022, 128: 104628. DOI: https://doi.org/10.1016/j.tust.2022.104628.

    Article  Google Scholar 

  2. FARAHANI M V, SADEGHI J, JAHROMI S G, et al. Modal based method to predict subway train-induced vibration in buildings [J]. Structures, 2023, 47: 557–572. DOI: https://doi.org/10.1016/j.istruc.2022.11.092.

    Article  Google Scholar 

  3. CAO Z, XU Y, YUAN Z, et al. Nonstationary vibration responses of a three-dimensional tunnel-soil system excited by moving stochastic loads [J]. Computers and Geotechnics, 2020, 125: 103658. DOI: https://doi.org/10.1016/j.compgeo.2020.103658.

    Article  Google Scholar 

  4. YU H, WANG B, LI Y, et al. A two-step framework for stochastic dynamic analysis of uncertain vehicle-bridge system subjected to random track irregularity [J]. Computers & Structures, 2021, 253: 106583. DOI: https://doi.org/10.1016/j.compstruc.2021.106583.

    Article  Google Scholar 

  5. WU B, ZENG Y, ZHOU Z, et al. Vibration prediction based on the coupling method of half-train model and 3D refined finite element ground model [J]. Computers and Geotechnics, 2021, 134: 104133. DOI: https://doi.org/10.1016/j.compgeo.2021.104133.

    Article  Google Scholar 

  6. WANG L, ZHU Z, COSTA P A, et al. A framework combining pseudo-excitation method and two-and-a-half-dimensional finite element method for random ground vibrations induced by high-speed trains [J]. Advances in Structural Engineering, 2020, 23(15): 3263–3277. DOI: https://doi.org/10.1177/1369433220934556.

    Article  Google Scholar 

  7. WANG L, ZHU Z, BAI Y, et al. A fast random method for three-dimensional analysis of train-track-soil dynamic interaction [J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 252–262. DOI: https://doi.org/10.1016/j.soildyn.2018.08.021.

    Article  Google Scholar 

  8. JOMO J N, DE PRENTER F, ELHADDAD M, et al. Robust and parallel scalable iterative solutions for large-scale finite cell analyses [J]. Finite Elements in Analysis and Design, 2019, 163: 14–30. DOI: https://doi.org/10.1016/jfmel.2019.01.009.

    Article  Google Scholar 

  9. ZHU Z, XIA Y, WANG L, et al. A parallel computing method for three-dimensional random vibration of train-track-soil dynamic interaction based on GPU [J]. Journal of Hunan University(Natural Sciences), 2021, 48(7): 79–88. DOI: https://doi.org/10.16339/j.cnki.hdxbzkb.2021.07.010. (in Chinese)

    Google Scholar 

  10. JELICH C, KARIMI M, KESSISSOGLOU N, et al. Efficient solution of block Toeplitz systems with multiple right-hand sides arising from a periodic boundary element formulation [J]. Engineering Analysis with Boundary Elements, 2021, 130: 135–144. DOI: https://doi.org/10.1016/j.enganabound.2021.05.003.

    Article  MathSciNet  Google Scholar 

  11. AMINI S, TOUTOUNIAN F, GACHPAZAN M. The block CMRH method for solving nonsymmetric linear systems with multiple right-hand sides [J]. Journal of Computational and Applied Mathematics, 2018, 337: 166–174. DOI: https://doi.org/10.1016/j.cam.2018.01.012.

    Article  MathSciNet  Google Scholar 

  12. HEYOUNI M, ESSAI A. Matrix Krylov subspace methods for linear systems with multiple right-hand sides [J]. Numerical Algorithms, 2005, 40: 137–156. DOI: https://doi.org/10.1007/s11075-005-1526-2.

    Article  ADS  MathSciNet  Google Scholar 

  13. CHAN T F, WAN W L. Analysis of projection methods for solving linear systems with multiple right-hand sides [J]. SIAM Journal on Scientific Computing, 1997, 18(6): 1698–1721. DOI: https://doi.org/10.1137/S1064827594273067.

    Article  MathSciNet  Google Scholar 

  14. GU G D. A seed method for solving nonsymmetric linear systems with multiple right-hand sides [J]. International Journal of Computer Mathematics, 2002, 79(3): 307–326. DOI: https://doi.org/10.1080/00207160211931.

    Article  MathSciNet  Google Scholar 

  15. MOJARRAB M, TOUTOUNIAN F. Global LSMR (Gl-LSMR) method for solving general linear systems with several right-hand sides [J]. Journal of Computational and Applied Mathematics, 2017, 321: 78–89. DOI: https://doi.org/10.1016/j.cam.2017.02.011.

    Article  MathSciNet  Google Scholar 

  16. SMITH C F, PETERSON A F, MITTRA R. A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields [J]. IEEE Transactions on Antennas and Propagation, 1989, 37(11): 1490–1493. DOI: https://doi.org/10.1109/8.43571.

    Article  ADS  Google Scholar 

  17. SUN D L, HUANG T Z, JING Y F, et al. A block GMRES method with deflated restarting for solving linear systems with multiple shifts and multiple right-hand sides [J]. Numerical Linear Algebra with Applications, 2018, 25(5): e2148. DOI: https://doi.org/10.1002/nla.2148.

    Article  MathSciNet  Google Scholar 

  18. ELBOUYAHYAOUI L, HEYOUNI M. On applying weighted seed techniques to GMRES algorithm for solving multiple linear systems [J]. Boletim da Sociedade Paranaense de Matemática, 2018, 36(3): 155–172. DOI: https://doi.org/10.5269/bspm.v36i3.32109.

    Article  MathSciNet  Google Scholar 

  19. ABDEL-REHIM A M, MORGAN R B, WILCOX W. Improved seed methods for symmetric positive definite linear equations with multiple right-hand sides [J]. Numerical Linear Algebra with Applications, 2014, 21(3): 453–471. DOI: https://doi.org/10.1002/nla.1892.

    Article  MathSciNet  Google Scholar 

  20. KALANTZIS V, BEKAS C, CURIONI A, et al. Accelerating data uncertainty quantification by solving linear systems with multiple right-hand sides [J]. Numerical Algorithms, 2013, 62: 637–653. DOI: https://doi.org/10.1007/s11075-012-9687-2.

    Article  MathSciNet  Google Scholar 

  21. LI X, LIU H, ZHU J. MINRES seed projection methods for solving symmetric linear systems with multiple right-hand sides [J]. Mathematical Problems in Engineering, 2014, 2014. DOI: https://doi.org/10.1155/2014/357874.

  22. LI C, XIONG B, QIANG J, et al. Multiple linear system techniques for 3D finite element method modeling of direct current resistivity [J]. Journal of Central South University, 2012, 19(2): 424–432. DOI: https://doi.org/10.1007/s11771-012-1021-6.

    Article  Google Scholar 

  23. ABDEL-REHIM A, MORGAN R B, WILCOX W. Seed methods for linear equations in lattice qcd problems with multiple right-hand sides [J]. PoS-Proceedings of Science, 2009, lattice 2008. DOI: https://doi.org/10.48550/arXiv.0901.3512.

  24. CHEN X, WANG D, REN J, et al. Application of hybrid CPU-GPU computing platform in large-scale geotechnical finite element analysis [J]. China Civil Engineering Journal, 2016, 49(6): 105–112. DOI: https://doi.org/10.15951/j.tmgcxb.2016.06.012. (in Chinese)

    Google Scholar 

  25. LIU J, XIAN Z, ZHOU Y, et al. A marker-and-cell method for large-scale flow-based topology optimization on GPU [J]. Structural and Multidisciplinary Optimization, 2022, 65(4): 125. DOI: https://doi.org/10.1007/s00158-022-03214-z.

    Article  MathSciNet  Google Scholar 

  26. LOPES P C F, PEREIRA A M B, CLUA E W G, et al. A GPU implementation of the PCG method for large-scale image-based finite element analysis in heterogeneous periodic media [J]. Computer Methods in Applied Mechanics and Engineering, 2022, 399: 115276. DOI: https://doi.org/10.1016/j.cma.2022.115276.

    Article  ADS  MathSciNet  Google Scholar 

  27. LIU J, DU Y, DU X, et al. 3D viscous-spring artificial boundary in time domain [J]. Earthquake Engineering and Engineering Vibration, 2006, 5(1): 93–102. DOI: https://doi.org/10.1007/s11803-006-0585-2.

    Article  ADS  MathSciNet  CAS  Google Scholar 

  28. ZHU Z, WANG L, GONG W, et al. Study on vertical random vibration of train-bridge coupled system based on improved iteration model [J]. Journal of Hunan University (Natural Sciences), 2016, 43(11): 120–130. DOI: https://doi.org/10.16339/j.cnki.hdxbzkb.2016.11.017. (in Chinese)

    Google Scholar 

  29. LU F, LIN J H, KENNEDY D, et al. An algorithm to study non-stationary random vibrations of vehicle-bridge systems [J]. Computers & Structures, 2009, 87(3–4): 177–185. DOI: https://doi.org/10.1016/j.compstruc.2008.10.004.

    Article  Google Scholar 

  30. FAN W, SHENG X, LI Z, et al. The higher-order analysis method of statistics analysis for response of linear structure under stationary non-Gaussian excitation [J]. Mechanical Systems and Signal Processing, 2022, 166: 108430. DOI: https://doi.org/10.1016/j.ymssp.2021.108430.

    Article  Google Scholar 

  31. HE X, SHI K, WU T. An efficient analysis framework for high-speed train-bridge coupled vibration under non-stationary winds [J]. Structure and Infrastructure Engineering, 2020, 16(9): 1326–1346. DOI: https://doi.org/10.1080/15732479.2019.1704800.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHU Zhi-hui and FENG Yang developed the overarching research goals and edited the draft of the manuscript. YANG Xiao, LI Hao and ZOU You edited the manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Zhi-hui Zhu  (朱志辉).

Ethics declarations

ZHU Zhi-hui, FENG Yang, YANG Xiao, LI Hao and ZOU You declare that they have no conflict of interest.

Additional information

Foundation item: Project(2022YFB2603301) supported by the National Key R&D Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Zh., Feng, Y., Yang, X. et al. An efficient parallel computing method for random vibration analysis of a three-dimensional train-track-soil coupled model using Seed-PCG algorithm. J. Cent. South Univ. 31, 302–316 (2024). https://doi.org/10.1007/s11771-023-5474-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5474-6

Key words

关键词

Navigation