Skip to main content
Log in

Relationships between rock ultrasonic properties with loading stresses and challenges in deep mining

岩石超声特性与加载应力关系及在深部开采中面临的挑战

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In-situ stress measurement is a key task in deep underground mining activities. An efficient stress measurement technique is important for determining the safety of the surrounding rock mass. Rock acoustic characteristics can comprehensively reflect rock physical and mechanical properties, structures, and in-situ stresses. Acoustic information, with the wave velocity as a key parameter, is significantly correlated with factors such as stress, deformation, microstructure, and environmental conditions. Recent studies and developments regarding rock acoustic properties were summarized based on numerous research results in regard to four aspects: the wave velocity–stress–strain correlation, the influence of intrinsic factors such as lithology and pore structure, the influence of external factors such as confining pressure and temperature, and theoretical wave velocity models. Equations for the coupled stress–temperature–wave velocity relationship considering the effect of temperature under stress were presented. Finally, suggested research directions for future advances in rock acoustics and in-situ stress measurement for the development of deep mining engineering were described.

摘要

地应力测量是矿山进入深部采矿后需要开展的一项重要工作, 高效的地应力测量方法对于确定围岩的稳定性具有重要意义. 岩石的超声特性是其物理力学性质、 宏细观结构及受力状态等因素的综合体现, 以波速为关键参数的声学信息与围岩的应力状态、 变形、 细观结构、 实验条件等因素具有显著的关联性. 以众多专家学者研究成果为基础, 从波速−应力−应变关联性, 考虑岩性、 孔隙结构等内在因素影响, 以及围压、 温度等外界因素影响, 波速数学模型四方面介绍了岩石声学特性的研究现状, 提出了应力作用下考虑温度因素影响的应力−温度耦合波速关系方程, 求提出了关于岩石声学−应力研究发展的建议方向.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. CAI Mei-feng, BROWN E T. Challenges in the mining and utilization of deep mineral resources [J]. Engineering, 2017, 3(4): 432–433. DOI: https://doi.org/10.1016/J.ENG.2017.04.027.

    Article  Google Scholar 

  2. CAI Mei-feng, LI Peng, TAN Wen-hui, et al. Key engineering technologies to achieve green, intelligent, and sustainable development of deep metal mines in China [J]. Engineering, 2021, 7(11): 1513–1517. DOI: https://doi.org/10.1016/j.eng.2021.07.010.

    Article  Google Scholar 

  3. CAI Mei-feng, PENG Hua. Advance of in situ stress measurement in China [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2011, 3(4): 373–384. DOI: https://doi.org/10.3724/sp.j.1235.2011.00373.

    Article  Google Scholar 

  4. CHEN Liang, ZHAO Xing-guang, LIU Jian, et al. Progress on rock mechanics research of Beishan granite for geological disposal of high-level radioactive waste in China [J]. Rock Mechanics Bulletin, 2023, 2(3): 100046. DOI: https://doi.org/10.1016/j.rockmb.2023.100046.

    Article  Google Scholar 

  5. CAI Mei-feng. Prediction and prevention of rockburst in metal mines–A case study of Sanshandao gold mine [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(2): 204–211. DOI: https://doi.org/10.1016/j.jrmge.2015.11.002.

    Article  Google Scholar 

  6. TIAN Jia-yong. Review of the acoustoelaticity in rocks [J]. Progress in Geophys, 2010, 25(1): 162–168. DOI: https://doi.org/10.3969/j.issn.1004-2903.2010.01.023. (in Chinese)

    Google Scholar 

  7. BA Jing, CARCIONE J M, CAO Hong, et al. Poroacoustoelasticity of fluid-saturated rocks [J]. Geophysical Prospecting, 2013, 61(3): 599–612. DOI: https://doi.org/10.1111/j.1365-2478.2012.01091.x.

    Article  Google Scholar 

  8. LING Wen-chang, BA Jing, CARCIONE J M, et al. Poroacoustoelasticity for rocks with a dual-pore structure [J]. Geophysics, 2021, 86(1): MR17–MR25. DOI: https://doi.org/10.1190/geo2020-0314.1.

    Article  Google Scholar 

  9. ZHAO Ming-jie, RONG X U. The present situation and prospect of the acoustic properties research in rock [J]. Journal of Chongqing Jiaotong University, 2000, 19(2): 79–85, 98. DOI: https://doi.org/10.6038/pg20130151. (in Chinese)

    Google Scholar 

  10. WANG Pei-tao, YANG Tian-hong, ZHOU Jing-ren. Slope failure analysis considering anisotropic characteristics of foliated rock masses [J]. Arabian Journal of Geosciences, 2018, 11(9): 222. DOI: https://doi.org/10.1007/s12517-018-3583-6.

    Article  Google Scholar 

  11. WU Fa-quan, WU Jie, BAO Han, et al. Rapid intelligent evaluation method and technology for determining engineering rock mass quality [J]. Rock Mechanics Bulletin, 2023, 2(2): 100038. DOI: https://doi.org/10.1016/j.rockmb.2023.100038.

    Article  Google Scholar 

  12. LABIOUSE V, VIETOR T. Laboratory and in situ simulation tests of the excavation damaged zone around galleries in opalinus clay [J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 57–70. DOI: https://doi.org/10.1007/s00603-013-0389-4.

    Article  Google Scholar 

  13. LI Jian-he, SHENG Qian, ZHU Ze-qi, et al. Analysis of stress path and failure mode of surrounding rock during mine-by test tunnel excavation [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(4): 821–830. DOI: https://doi.org/10.13722/j.cnki.jrme.2016.0540. (in Chinese)

    Google Scholar 

  14. READ R S. 20 years of excavation response studies at AECL’s Underground Research Laboratory [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1251–1275. DOI: https://doi.org/10.1016/j.ijrmms.2004.09.012.

    Article  Google Scholar 

  15. FENG Xia-ting, WU Shi-yong, LI Shao-jun, et al. Comprehensive field monitoring of deep tunnels at Jinping underground laboratory (CJPL-II) in China [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(4): 649–657. DOI: https://doi.org/10.13722/j.cnki.jrme.2016.0048. (in Chinese)

    Google Scholar 

  16. LIU Guo-feng, FENG Xia-ting, JIANG Quan, et al. Failure characteristics, laws and mechanisms of rock spalling in excavation of large-scale underground powerhouse caverns in Baihetan [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5): 865–878. DOI: https://doi.org/10.13722/j.cnki.jrme.2015.0933. (in Chinese)

    Google Scholar 

  17. LURKA A. Location of high seismic activity zones and seismic hazard assessment in Zabrze Bielszowice coal mine using passive tomography [J]. Journal of China University of Mining and Technology, 2008, 18(2): 177–181. DOI: https://doi.org/10.1016/s1006-1266(08)60038-3.

    Article  Google Scholar 

  18. HAN Lai-ju, LI Zu-kui, YAN Jing, et al. Test and application of sonic properties of carbonate rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14): 2444–2447. DOI: https://doi.org/10.3321/j.issn:1000-6915.2004.14.028. (in Chinese)

    Google Scholar 

  19. YANG Zhen, GE Mao-chen, WANG Shu-gang. Characteristics of transmitting channel wave in a coal seam [J]. Mining Science and Technology (China), 2009, 19(3): 331–336. DOI: https://doi.org/10.1016/S1674-5264(09)60062-4.

    Article  Google Scholar 

  20. ZHANG Guo-kai, LI Hai-bo, WANG Ming-yang, et al. Evolution rule of acoustic characteristics of brittle rocks during whole stress-strain process [J]. Journal of Central South University, 2019, 50(8): 1971–1980. DOI: https://doi.org/10.11817/j.issn.1672-7207.2019.08.025.

    Google Scholar 

  21. LIU Zhu-ping, WU Xiao-wei, CHU Ze-han. Laboratory study of acoustic parameters of rock [J]. Acta Geophysica Sinica, 1994, 37(5):659–666. DOI: https://doi.org/10.1016/0148-9062(95)99182-W.

    Google Scholar 

  22. SUN Yong-lian, ZHOU Chu-liang, YU Xue-dong, et al. Experimental research on the ultrasonic technique and its application in studying rock properties [J]. Journal of China University of Mining & Technology, 1992, 30(1): 46–57. DOI: cnki:sun:zhkd.0.1992-00-004.

    Google Scholar 

  23. LI Xin-ping, ZHAO Hang, LUO Yi, et al. Experimental study of propagation and attenuation of elastic wave in deep rock mass with joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2319–2326. DOI: https://doi.org/10.13722/j.cnki.jrme.2015.0868. (in Chinese)

    Google Scholar 

  24. HU Ming-ming, ZHOU Hui, ZHANG Yong-hui, et al. Analysis of acoustic property of sandstone under uniaxial loading [J]. Rock Soil Mech, 2018, 39(12): 4468–4474. DOI: https://doi.org/10.16285/j.rsm.2017.0915.

    Google Scholar 

  25. ZHENG Gui-ping, ZHAO Xing-dong, LIU Jian-po, et al. Experimental study on change in acoustic wave velocity when rock is loading [J]. Journal of Northeastern University (Natural Science), 2009, 30(08): 1197–1200. DOI: https://doi.org/10.1360/972009-1549. (in Chinese)

    Google Scholar 

  26. GUO Yin-tong, YANG Chun-he. Experimental study on the change law between stress and velocity of longitudinal wave for the sandstone from northeastern Sichuan in uniaxial and triaxial compression [J]. Mining Research and Development, 2009, 30(8): 1197–1200. DOI: https://doi.org/10.13827/j.cnki.kyyk.2009.03.00. (in Chinese)

    Google Scholar 

  27. CHENG Li-jun, PAN Lin-hua, ZHANG Ye, et al. Velocity characteristics of P-wave and S-wave for shale reservoir under tri-axial compression experiments [J]. Fault-Block Oil & Gas Field, 2016, 23(4): 465–469. DOI: https://doi.org/10.6056/dkyqt201604013. (in Chinese)

    Google Scholar 

  28. ZHANG G K, LI H B, WANG M Y, et al. Crack initiation of granite under uniaxial compression tests: A comparison study [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(3): 656–666. DOI: https://doi.org/10.1016/j.jrmge.2019.07.014.

    Article  Google Scholar 

  29. YAN Xian-zhen, BAI Hai-bo, ZHAI Ming-lei. Experimental study on ultrasonic characteristics of shale rock with different bedding angle under uniaxial loading [J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S2): 552–559. DOI: CNKI:SUN:BASE.0.2021-S2-004. (in Chinese)

    Google Scholar 

  30. ZHANG Guo-kai, LI Hai-bo, XIA Xiang, et al. Experiment study on acoustic emission and wave propagation in granite under uniaxial compression [J]. Chinese Journal of Underground Space and Engineering, 2017, 36(5): 1133–1144. DOI: https://doi.org/10.13722/j.cnki.jrme.2016.0849. (in Chinese)

    Google Scholar 

  31. LI Hao-ran, YANG Chun-he, LIU Yu-gang, Experimental study of ultrasonic velocity and acoustic emission properties of salt rock under uniaxial compression load [J]. Chinese Journal of Underground Space and Engineering, 2014, 33(10): 2107–2116. DOI: https://doi.org/10.13722/j.cnki.jrme.2014.10.018. (in Chinese)

    Google Scholar 

  32. ZHANG Pei-sen, ZHAO Cheng-ye, LI Teng-hui, et al. Experimental study on wave velocity variation and energy evolution of red sandstone during triaxial loading process [J]. Chinese Journal of Underground Space and Engineering, 2021, 40(7): 1369–1382. DOI: https://doi.org/10.13722/j.cnki.jrme.2020.1145. (in Chinese)

    Google Scholar 

  33. GE Guang-hua, WANG Cheng, LIANG Li. Acoustic wave propagation characteristics of the soft sandstone under loading [J]. Science Technology and Engineering, 2015, 15(18): 85–90. DOI: https://doi.org/10.3969/j.issn.1671-1815.2015.18.015. (in Chinese)

    Google Scholar 

  34. CAI M, KAISER P K, TASAKA Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 833–847. DOI: https://doi.org/10.1016/j.ijrmms.2004.02.001.

    Article  Google Scholar 

  35. GONG Feng-qiang, WU Chen. Identifying crack compaction and crack damage stress thresholds of rock using load-unload response ratio (LURR) theory [J]. Rock Mechanics and Rock Engineering, 2020, 53(2): 943–954. DOI: https://doi.org/10.1007/s00603-019-01936-z.

    Article  Google Scholar 

  36. CHEN Xiang, SUN Jin-zhong, TAN Chao-shuang, et al. Relation between P-wave velocity and stress of rock samples and their unloading effect [J]. Chinese Journal of Geotechnical Engineering, 2010, 32(5): 757–761. DOI: CNKI:SUN:YTGC.0.2010-05-021. (in Chinese)

    Google Scholar 

  37. DONG Long-jun, CHEN Yong-chao, SUN Dao-yuan, et al. Implications for rock instability precursors and principal stress direction from rock acoustic experiments [J]. International Journal of Mining Science and Technology, 2021, 31(5): 789–798. DOI: https://doi.org/10.1016/j.ijmst.2021.06.006.

    Article  Google Scholar 

  38. ZHAO Ming-jie, WU De-lun. Ultrasonic velocity and attenuation of rock under uniaxial loading [J]. Chinese Journal of Geotechnical Engineering, 1999, 18(1): 50–55. DOI: https://doi.org/10.3321/j.issn:1000-6915.1999.01.011. (in Chinese)

    Google Scholar 

  39. SAROGLOU C, KALLIMOGIANNIS V. Fracturing process and effect of fracturing degree on wave velocity of a crystalline rock [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(5): 797–806. DOI: https://doi.org/10.1016/j.jrmge.2017.03.012.

    Article  Google Scholar 

  40. ALI ZERROUKI A, GERAUD Y, DOBBI A, et al. P-wave velocity anisotropy in Hamra Quartzites Reservoir, Hassi Messaoud oil field in Algeria [J]. Arabian Journal of Geosciences, 2022, 15(9): 1–11. DOI: https://doi.org/10.1007/s12517-022-10022-8.

    Google Scholar 

  41. LIU Yang, ZHAO Ming-jie. Research overview of the relation between ultrasonic parameters and stress on rock [J]. Journal of Chongqing Jiaotong University (Natural Science), 2006, 25(3): 54–58. DOI: https://doi.org/10.3969/j.issn.1674-0696.2006.03.015. (in Chinese)

    Google Scholar 

  42. MASHINSKII E I. Variants of the strain-amplitude dependence of elastic wave velocities in rocks under pressure [J]. Journal of Geophysics and Engineering, 2004, 1(4): 295–306. DOI: https://doi.org/10.1088/1742-2132/1/4/008.

    Article  Google Scholar 

  43. KAMALI-ASL A, KC B, GHAZANFARI E, et al. Alteration of ultrasonic signatures by stress-induced changes in hydromechanical properties of fractured rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104705. DOI: https://doi.org/10.1016/j.ijrmms.2021.104705.

    Article  Google Scholar 

  44. LIU Xiang-jun, LIU Hong, XU Xiao-lei, et al. Experimental reasearch on acoustic wave propagation characteristic of low porosity and permeability sandstone under loading conditions [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(3): 560–567. DOI: https://doi.org/10.3321/j.issn:1000-6915.2009.03.015. (in Chinese)

    Google Scholar 

  45. JIN Jie-fang, CHENG Yun, CHANG Xiao-xu, et al. Experimental study on stress wave propagation characteristics in red sandstone under axial static stress [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 1939–1950. DOI: https://doi.org/10.13722/j.cnki.jrme.2016.1458. (in Chinese)

    Google Scholar 

  46. CHAWRE B. Correlations between ultrasonic pulse wave velocities and rock properties of quartz-mica schist [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3): 594–602. DOI: https://doi.org/10.1016/j.jrmge.2018.01.006.

    Article  Google Scholar 

  47. CHEN Min, ZHANG Tao, SHAN Hua-gang, et al. Study of the relationship between compression wave velocity and physical properties of calcareous sand [J]. Rock and Soil Mechanics, 2019, 40(6): 2275–2283. DOI: https://doi.org/10.16285/j.rsm.2018.1160. (in Chinese)

    Google Scholar 

  48. MA Zhong-gao, XIE Jie-gao. Relationship among compressional wave, shear wave velocities and density of rocks [J]. Progress in Geophysics, 2005, 20(4): 905–910. DOI: https://doi.org/10.1360/gs050303. (in Chinese)

    Google Scholar 

  49. XU Xiao-lian, ZHANG Ru, DAI Feng, et al. Effect of coal and rock characteristics on ultrasonic velocity [J]. Journal of China Coal Society, 2015, 40(4): 793–800. DOI: https://doi.org/10.13225/j.cnki.jccs.2014.3012. (in Chinese)

    Google Scholar 

  50. LIU Xi-ling, CUI Jia-hui, LI Xi-bing, et al. Study on attenuation characteristics of elastic wave in different types of rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(S1): 3223–3230. DOI: https://doi.org/10.13722/j.cnki.jrme.2017.0604. (in Chinese)

    Google Scholar 

  51. GONZÁLEZ, SALDAÑA, ARZÚA. Analytical model for predicting the UCS from P-wave velocity, density, and porosity on saturated limestone [J]. Applied Sciences, 2019, 9(23): 5265. DOI: https://doi.org/10.3390/app9235265.

    Article  Google Scholar 

  52. KHANDELWAL M. Correlating P-wave velocity with the physico-mechanical properties of different rocks [J]. Pure and Applied Geophysics, 2013, 170(4): 507–514. DOI: https://doi.org/10.1007/s00024-012-0556-7.

    Article  Google Scholar 

  53. HEMMATI NOURANI M, TAHERI MOGHADDER M, SAFARI M. Classification and assessment of rock mass parameters in Choghart iron mine using P-wave velocity [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(2): 318–328. DOI: https://doi.org/10.1016/j.jrmge.2016.11.006.

    Article  Google Scholar 

  54. DUAN Xi, LIU Xiang-jun. Two-phase pore-fluid distribution in fractured media: Acoustic wave velocity vs saturation [J]. Applied Geophysics, 2018, 15(2): 311–317. DOI: https://doi.org/10.1007/s11770-018-0686-5.

    Article  Google Scholar 

  55. WANG Xiu-ming. Research progress in acoustics for multiphase porous reservoirs [J]. Journal of Applied Acoustics, 2009, 28(1): 1–9. DOI: https://doi.org/10.1360/972009-782. (in Chinese)

    Google Scholar 

  56. ZHANG Zhen-yu, JAN N, REN Ting, et al. Influence of void space on microscopic behavior of fluid flow in rock joints [J]. International Journal of Mining Science and Technology, 2014, 24(3): 335–340. DOI: https://doi.org/10.1016/j.ijmst.2014.03.008.

    Article  Google Scholar 

  57. JU Yang, YANG Yong-ming, MAO Yan-zhe, et al. Experimental study of stress wave propagation mechanism in pore media [J]. Scientia Sinica (Technologica), 2009, 39(5): 904–918. DOI: https://doi.org/10.1007/s11431-009-0128-y. (in Chinese)

    Google Scholar 

  58. WANG Zi-zhe. Numerical-modeling of pore structure effects on acoustic attenuation in dry rocks [J]. Progress in Geophysics, 2014, 29(6): 2766–2773. DOI: https://doi.org/10.6038/pg2014064. (in Chinese)

    Google Scholar 

  59. ZHANG Jin-hao, CHEN Hong-kai, WANG He. Experimental study on the ultrasonic testing including porosity of rock damage characteristics [J]. Journal of Geoscience and Environment Protection, 2017, 5(2): 19–29. DOI: https://doi.org/10.4236/gep.2017.52002.

    Article  Google Scholar 

  60. ZHU Shuang-jiang, KANG Jian-hong, WANG You-pai, et al. Effect of CO2 on coal P-wave velocity under triaxial stress [J]. International Journal of Mining Science and Technology, 2022, 32(1): 17–26. DOI: https://doi.org/10.1016/j.ijmst.2021.09.006.

    Article  Google Scholar 

  61. KASSAB M A, WELLER A. Study on P-wave and S-wave velocity in dry and wet sandstones of Tushka region, Egypt [J]. Egyptian Journal of Petroleum, 2015, 24(1): 1–11. DOI: https://doi.org/10.1016/j.ejpe.2015.02.001.

    Article  Google Scholar 

  62. LI Yang, ZHANG Chao, SONG Wei-dong, et al. Elastic longitudinal wave and porosity of subsea gold deposits [J]. Journal of China University of Mining & Technology, 2021, 50(2): 239–247. DOI: https://doi.org/10.13247/j.cnki.jcumt.001224. (in Chinese)

    Google Scholar 

  63. MA Ru-peng, BA Jing, LEBEDEV M, et al. Effect of pore fluid on ultrasonic S-wave attenuation in partially saturated tight rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 147: 104910. DOI: https://doi.org/10.1016/j.ijrmms.2021.104910.

    Article  Google Scholar 

  64. ZHANG Kai, LI Dong-hui, LIANG Yan-xia. Experimental study on relationship between acoustic velocity and porosity of coal samples under triaxial loading [J]. Coal Science and Technology, 2020, 48(5): 63–68. DOI: https://doi.org/10.13199/j.cnki.cst.2020.05.008. (in Chinese)

    Google Scholar 

  65. XIE Zu-feng, HAN Qing-bang, ZHU Chang-ping, et al. The establishment and experimental verification of the relationship between Scholte wave velocity and porosity [J]. Technical Acoustics, 2013, 32(2): 81–85. DOI: https://doi.org/10.3969/j.issn1000-3630.2013.02.002. (in Chinese)

    Google Scholar 

  66. BA Jing, PAN Xu-ming, CARCIONE J M, et al. Effects of pressure and fluid properties on P-wave velocity and attenuation of tight sandstones [J]. Frontiers in Earth Science, 2023, 10: 1065630. DOI: https://doi.org/10.3389/feart.2022.1065630.

    Article  Google Scholar 

  67. HAMADA G, JOSEPH V. Developed correlations between sound wave velocity and porosity, permeability and mechanical properties of sandstone core samples [J]. Petroleum Research, 2020, 5(4): 326–338. DOI: https://doi.org/10.1016/j.ptlrs.2020.07.001.

    Article  Google Scholar 

  68. SAROGLOU C, KALLIMOGIANNIS V. Fracturing process and effect of fracturing degree on wave velocity of a crystalline rock [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(5): 797–806. DOI: https://doi.org/10.1016/j.jrmge.2017.03.012.

    Article  Google Scholar 

  69. XIA K, NASSERI M H B, MOHANTY B, et al. Effects of microstructures on dynamic compression of Barre granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 879–887. DOI: https://doi.org/10.1016/j.ijrmms.2007.09.013.

    Article  Google Scholar 

  70. LI Chao, LUO Xiao-rong, ZHANG Li-kuan. Overpressure responses for chemical compaction of mudstones and the pore pressure prediction [J]. Journal of China University of Mining & Technology, 2020, 49(5): 951–973. DOI: https://doi.org/10.13247/j.cnki.jcumt.001182. (in Chinese)

    Google Scholar 

  71. WU Yi-xiong, HU Xiang-yang, YI Juan-zi, et al. Research and application of acoustic time difference response characteristics of high temperature and overpressure gas reservoir in Yinggehai Basin [J]. Natural Gas Geoscience, 2021, 32(2): 298–307. DOI: https://doi.org/10.11764/j.issn.1672-1926.2020.09.007. (in Chinese)

    Google Scholar 

  72. GUO Jia-qi, XU Zi-long, LI Hong-fei. Influence of water-saturated state on mechanical properties and longitudinal wave velocity of karst limestone [J]. Journal of Civil and Environmental Engineering, 2015, 37(2): 60–66. DOI: https://doi.org/10.11835/j.issn.1674-4764.2015.02.010. (in Chinese)

    Google Scholar 

  73. DENG Tao, HAN Wen-feng, BAO Han-zhang. On the characteristics of wave velocity variations for marbles saturated in water [J]. Chinese Journal of Rock Mechanics and Engineering, 2000, 19(6): 762–765. DOI: https://doi.org/10.3321/j.issn:1000-6915.2000.06.016. (in Chinese)

    Google Scholar 

  74. MA Ru-peng, BA Jing, CARCIONE J, et al. Experimental study on petrophysical properties as a tool to identify pore fluids in tight-rock reservoirs [J]. Frontiers in Earth Science, 2021, 9: 652344. DOI: https://doi.org/10.3389/feart.2021.652344.

    Article  Google Scholar 

  75. CHEN Xu, YU Jin, LI Hong, et al. Experimental study of propagation characteristics of acoustic wave in rocks with different lithologies and water contents [J]. Rock and Soil Mechanics, 2013, 34(9): 2527–2533. DOI: CNKI:SUN:YTLX.0.2013-09-015. (in Chinese)

    Google Scholar 

  76. ZHU He-hua, ZHOU Zhi-guo, DENG Tao. Acoustic parameters of low-porosity rock under dry and saturated conditions [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(5): 823–828. DOI: https://doi.org/10.3321/j.issn:1000-6915.2005.05.016. (in Chinese)

    Google Scholar 

  77. SHI Xing-jue, XU Guo-ming, JING Ping, et al. The laboratory study of influence of water saturation on rock’s velocity and attenuation [J]. Chinese Journal of Geophysics, 1995, 38(S1): 281–287. DOI: CNKI:SUN:DQWX.0.1995-S1-028. (in Chinese)

    Google Scholar 

  78. LIU Ye, WANG Hong-cai, HOU Jia-gen, et al. Experiments on seismic velocity of sandstones under dry, water and oil saturated conditions [J]. Progress in Geophysics, 2018, 33(4): 1388–1394. DOI: https://doi.org/10.6038/pg2018BB0451. (in Chinese)

    Google Scholar 

  79. YIN Xiao-meng, YAN E-chuan, WANG Lu-nan, et al. Effect of water and microstructure on wave velocity anisotropy of schist and its mechanism [J]. Rock and Soil Mechanics, 2019, 40(6): 2221–2230. DOI: https://doi.org/10.16285/j.rsm.2018.0302. (in Chinese)

    Google Scholar 

  80. HAO Zhao-bing, QIN Jing-xin, WU Xiang-yang. Overview of research on the seismic wave quality factor (Q) [J]. Progress in Geophysics, 24(2): 375–381. DOI: https://doi.org/10.1016/S1874-8651(10)60080-4. (in Chinese)

  81. SHI Ge, YANG Dong-quan. The regression analysis study on velocity and porosity and clay content of rocks [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2001, 37(3): 379–384. DOI: https://doi.org/10.3321/j.issn:0479-8023.2001.03.015. (in Chinese)

    Google Scholar 

  82. CHEN Zu-an, WU Xiang-yang. A model for the relation between wave velocity and porosity as well as clay content in sandstone [J]. Progress in Geophysics, 2000, 15(1): 78–82. DOI: CNKI:SUN:DQWJ.0.2000-01-006. (in Chinese)

    Google Scholar 

  83. DENG Tao, YANG Lin-de. Characteristics of velocity ratio of P-wave and S-wave for anisotropic rocks [[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(10): 2023–2029. DOI: https://doi.org/10.3321/j.issn:1000-6915.2006.10.012. (in Chinese)

    MathSciNet  Google Scholar 

  84. ZHANG Xiao-ping, ZHU Hang-kai, LIU Quan-sheng, et al. Research on microseismic event locating in layered rock masses based on snell’s law and cuckoo search algorithm [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(7): 1383–1391. DOI: https://doi.org/10.13722/j.cnki.jrme.2020.1154. (in Chinese)

    Google Scholar 

  85. HAN Song, CAI Mei-feng. Study on physical simulation of jointed rock mass and ultrasonic experiments [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 1026–1033. DOI: https://doi.org/10.1016/S1672-6529(07)60007-9. (in Chinese)

    Google Scholar 

  86. HAN Song, CAI Mei-feng. A research on the ultrasonic wave velocity in fracture rock mass subjected to uniaxial loading [J]. Gold, 2006, 27(12): 35–39. DOI: https://doi.org/10.3969/j.issn.1001-1277.2006.12.009. (in Chinese)

    Google Scholar 

  87. LOUIS L, DAVID C, ROBION P. Comparison of the anisotropic behaviour of undeformed sandstones under dry and saturated conditions [J]. Tectonophysics, 2003, 370(1–4): 193–212. DOI: https://doi.org/10.1016/S0040-1951(03)00186-0.

    Article  Google Scholar 

  88. SIMONE T, ARND H, RICCARDO A, et al. Effect of fracture scale length and aperture on seismic wave propagation: An experimental study [J]. Journal of Petrology, 2007, 48(12): 2407–2430.

    Google Scholar 

  89. SONG Zhan-ping, WANG Jun-xiang, JIANG An-nan, et al. Ultrasonic tests on schist with saturated fractures under uniaxial compression [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(12): 2377–2383. DOI: https://doi.org/10.13722/j.cnki.jrme.2014.12.001. (in Chinese)

    Google Scholar 

  90. KURTULUS C, ÜCKARDES M, SARi U, et al. Experimental studies in wave propagation across a jointed rock mass [J]. Bulletin of Engineering Geology and the Environment, 2012, 71(2): 231–234. DOI: https://doi.org/10.1007/s10064-011-0392-5.

    Article  Google Scholar 

  91. ZHAO Xiu-cheng, ZHAO Xiao-yan, GUO Jia-qi. Experimental study on acoustic and mechanical properties of intermittent jointed rock mass [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(7): 1408–1419. DOI: https://doi.org/10.13722/j.cnki.jrme.2020.0008. (in Chinese)

    Google Scholar 

  92. CHEN Qiao, LIU Xiang-jun, LIU Hong, et al. An experimental study of ultrasonic penetration through bedding shale reservoirs [J]. Natural Gas Industry, 2013, 33(8): 140–144. DOI: https://doi.org/10.3787/j.issn.1000-0976.2013.08.025.

    Google Scholar 

  93. CHEN Tian-yu, FENG Xia-ting, ZHANG Xi-wei, et al. Experimental study on mechanical and anisotropic properties of black shale [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1772–1779. DOI: https://doi.org/10.13722/j.cnki.jrme.2014.09.006. (in Chinese)

    Google Scholar 

  94. XU Feng-lin, CHEN Qiao, ZHU Hong-lin, et al. Response analysis of shale bedding structure to ultrasonic characteristics and its application [J]. Petroleum Exploration and Development, 2019, 46(1): 82–92. DOI: https://doi.org/10.1016/S1876-3804(19)30007-2.

    Article  Google Scholar 

  95. LI Xian-sheng, LIU Xiang-jun, XIONG Jian, et al. Influence of bedding on compressional wave characteristics of shales [J]. Lithologic Reservoirs, 2019, 31(3): 152–160. DOI: https://doi.org/10.12108/yxyqc.20190318. (in Chinese)

    Google Scholar 

  96. DENG Hua-feng, LI Tao, LI Jian-lin, et al. Study on calculation method of anisotropic acoustic and mechanical parameters of layered rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2725–2732. DOI: https://doi.org/10.13722/j.cnki.jrme.2019.1174. (in Chinese)

    Google Scholar 

  97. SHI Xiao-ming, WANG Guan-min, XIONG Zhou-hai, et al. Experimental study on influence of laminae direction on P-wave and S-wave velocities and elastic parameters of shale [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(8): 1567–1677. DOI: https://doi.org/10.13722/j.cnki.jrme.2019.0060. (in Chinese)

    Google Scholar 

  98. ZHOU Feng, XU Ming-jie, MA Zhong-gao, et al. An experimental study on the correlation between the elastic wave velocity and microfractures in coal rock from the Qingshui Basin [J]. Journal of Geophysics and Engineering, 2012, 9(6): 691–696. DOI: https://doi.org/10.1088/1742-2132/9/6/691.

    Article  Google Scholar 

  99. CHENG Yuan-fan, SUN Yuan-wei, CHANG Xin, et al. Acoustic characteristics research of dense limestone under different influencing factors [J]. Science Technology and Engineering, 2014, 14(15): 143–147. DOI: https://doi.org/10.3969/j.issn.1671-1815.2014.15.028. (in Chinese)

    Google Scholar 

  100. SONG Lian-teng, WANG Yun, LIU Zhong-hua, et al. Elastic anisotropy characteristics of tight sands under different confining pressures and fluid saturation states [J]. Progress in Geophysics, 2015, 58(9): 3401–3411. DOI: https://doi.org/10.6038/cjg20150932. (in Chinese)

    Google Scholar 

  101. YIN Shuai, DING Wwen-long, SUN Yuan-hui, et al. Experimental study on pore/fissure morphology evolution of gas-bearing tight sandstone under different confining pressure conditions [J]. Geophysical Prospecting for Petroleum, 2016, 55(3): 326–332. DOI: https://doi.org/10.3969/j.issn.1000-1441.2016.03.002. (in Chinese)

    Google Scholar 

  102. ZHANG Sheng, ZHANG Xu-long, WANG Xiao-feng, et al. Experimental study on the variation of wave velocities of granite during loading process under a certain confining pressure [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(9): 1767–1775. DOI: https://doi.org/10.13722/j.cnki.jrme.2019.0246. (in Chinese)

    Google Scholar 

  103. GONG Jia-chen, CHEN Shi-hai. Experimental study on mechanical parameters and wave velocity variation of sandstone under high ground stress [J]. Journal of Shandong University (Engineering Science), 2020, 50(3): 82–87, 97. DOI: https://doi.org/10.6040/i.issn.1672-3961.0.2019.622. (in Chinese)

    Google Scholar 

  104. WANG Mi, TIAN Jia-yong. Coupled model for velocity change in rocks subjected to hydrostatic confining pressure based on rock acoustoelasticity [J]. Progress in Geophysics, 2019, 34(2): 462–468. DOI: https://doi.org/10.6038/pg2019CC0040. (in Chinese)

    Google Scholar 

  105. GUO De-yong, HAN De-xin, FENG Zhi-liang. Experimental study of the wave velocity characteristics of tectonic coals under envelope pressure [J]. Coal Science and Technology, 1998, 26(4): 22–24. DOI: https://doi.org/10.13199/j.cst.1998.04.22.guody.007. (in Chinese)

    Google Scholar 

  106. JIN Jie-fang, LIANG Chen, WANG Jie, et al. Effect of confining pressure on spectrum and frequency band energy of stress wave in red sandstone [J]. Nonferrous Metals Science and Engineering, 2018, 9(4): 76–82. DOI: https://doi.org/10.13264/j.cnki.ysjskx.2018.04.013. (in Chinese)

    Google Scholar 

  107. WANG Gui-bin, YANG Chun-he, GUO Ying-tong, et al. Experimental research on distribution characteristics and influential factors of P-wave velocity for rocks in northeast region of Sichuan Province [J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(S1): 2834–2842. DOI: CNKI:SUN:YSLX.0.2011-S1-033. (in Chinese)

    Google Scholar 

  108. FAN L F, SUN H Y. Seismic wave propagation through an in situ stressed rock mass [J]. Journal of Applied Geophysics, 2015, 121: 13–20. DOI: https://doi.org/10.1016/j.jappgeo.2015.07.002.

    Article  Google Scholar 

  109. LI Yang, ZHANG Chao, SONG Wei-dong, et al. Elastic longitudinal wave and porosity of subsea gold deposits [J]. Journal of China University of Mining & Technology, 2021, 50(2): 239–247. DOI: https://doi.org/10.13247/i.cnki.jcumt.001224. (in Chinese)

    Google Scholar 

  110. YANG Shu-feng, CHEN Han-lin, JIANG Ji-shuang, et al. Wave velocity characteristics of South China Type I and S granites under high temperature and pressure and their geological significance [J]. Science in China Series D-Earth Sciences, 1997, 27(1): 33–38. DOI: CNKI:SUN:JDXK.0.1997-01-005. (in Chinese)

    Article  Google Scholar 

  111. DU Shou-ji, MA Ming, CHEN Hao-hua, et al. Testing study on longitudinal wave characteristics of granite after high temperature [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1803–1806. DOI: https://doi.org/10.3321/j.issn:1000-6915.2003.11.010. (in Chinese)

    Google Scholar 

  112. WU Xiao-dong, LIU Jun-rong, QIN Ji-shun. Effects of thermal treatment on wave velocity as well as porosity and permeability of rock [J]. Journal of China University of Petroleum (Edition of Natural Science), 2003, 27(4): 70–75. DOI: https://doi.org/10.3321/j.issn:1000-5870.2003.04.018. (in Chinese)

    Google Scholar 

  113. YAN Zhi-guo, ZHU He-hua, DENG Tao, et al. Experimental study on longitudinal wave characteristics of tuff, granite and breccia after high temperature [J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2010–2014. DOI: https://doi.org/10.3321/j.issn:1000-4548.2006.11.017. (in Chinese)

    Google Scholar 

  114. HE Guo-liang, WU Gang, HUANG Xing-chun, et al. Experimental study on ultrasonic properties of sandstone before and after high temperature [J]. Rock and Soil Mechanics, 2007, 28(4): 779–784. DOI: https://doi.org/10.3969/j.issn.1000-7598.2007.04.028. (in Chinese)

    Google Scholar 

  115. ZHI Le-peng, XU Jin-yu, LIU Zhi-qun, et al. Research on ultrasonic characteristics and Brazilian splitting-tensile test of granite under post-high temperature [J]. Rock and Soil Mechanics, 2012, 33(S1): 61–66. DOI: CNKI:SUN:YTLX.0.2012-S1-010. (in Chinese)

    Google Scholar 

  116. ZHI Le-peng, XU Jin-yu, LIU Jun-zhong, et al. Research on ultrasonic characteristics and mechanical properties of granite under post-high temperature [J]. Chinese Journal of Underground Space and Engineering, 2012, 8(4): 716–721. DOI: https://doi.org/10.3969/j.issn.1673-0836.2012.04.009. (in Chinese)

    Google Scholar 

  117. SU Hai-jian, JING Hong-wen, ZHAO Hong-hui. Experimental investigation on loading rate effect of sandstone after high temperature under uniaxial compression [J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1064–1071. DOI: https://doi.org/10.11779/CJGE201406011. (in Chinese)

    Google Scholar 

  118. WANG Peng, XU Jin-yu, LIU Shi, et al. Mechanical properties and ultrasonic time-frequency characteristics of thermally damaged sandstone [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(9): 1897–1904. DOI: https://doi.org/10.13722/j.cnki.jrme.2014.09.021. (in Chinese)

    Google Scholar 

  119. WANG Z L, SHI G Y. Effect of heat treatment on dynamic tensile strength and damage behavior of medium-fine-grained Huashan granite [J]. Experimental Techniques, 2017, 41(4): 365–375. DOI: https://doi.org/10.1007/s40799-017-0180-7.

    Article  Google Scholar 

  120. WU Xing-hui, CAI Mei-feng, REN Fen-hua, et al. Evolutions of P-wave velocity and thermal conductivity of granite under different thermal treatments [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 457–467. DOI: https://doi.org/10.13722/.cnkijrme.2021.0532. (in Chinese)

    Google Scholar 

  121. MOTRA H B, ZERTANI S. Influence of loading and heating processes on elastic and geomechanical properties of eclogites and granulites [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(1): 127–137. DOI: https://doi.org/10.1016/j.jrmge.2017.11.001.

    Article  Google Scholar 

  122. HU Jian-jun, XIE He-ping, SUN Qiang, et al. Changes in the thermodynamic properties of alkaline granite after cyclic quenching following high temperature action [J]. International Journal of Mining Science and Technology, 2021, 31(5): 843–852. DOI: https://doi.org/10.1016/j.ijmst.2021.07.010.

    Article  Google Scholar 

  123. PAN Ji-liang, XI Xun, WU Xu, et al. Physical properties evolution and microscopic mechanisms of granite modified by thermal and chemical stimulation [J]. Case Studies in Thermal Engineering, 2023, 41: 102633. DOI: https://doi.org/10.1016/j.csite.2022.102633.

    Article  Google Scholar 

  124. ZHOU Hui, LIU Hai-tao, HU Da-wei, et al. Anisotropies in mechanical behaviour, thermal expansion and P-wave velocity of sandstone with bedding planes [J]. Rock Mechanics and Rock Engineering, 2016, 49(11): 4497–4504. DOI: https://doi.org/10.1007/s00603-016-1016-y.

    Article  Google Scholar 

  125. LIU Shi, XU Jin-yu. An experimental study on the physico-mechanical properties of two post-high-temperature rocks [J]. Engineering Geology, 2015, 185: 63–70. DOI: https://doi.org/10.1016/j.enggeo.2014.11.013.

    Article  Google Scholar 

  126. GAUTAM P K, VERMA A K, SINGH T N, et al. Experimental investigations on the thermal properties of Jalore granitic rocks for nuclear waste repository [J]. Thermochimica Acta, 2019, 681: 178381. DOI: https://doi.org/10.1016/j.tca.2019.178381.

    Article  Google Scholar 

  127. WU Hui, LIU Yu-jie, YANG Ming, et al. Effect of temperature-dependent rock thermal conductivity and specific heat capacity on heat recovery in an enhanced geothermal system [J]. Rock Mechanics Bulletin, 2023, 2(2): 100045. DOI: https://doi.org/10.1016/j.rockmb.2023.100045.

    Article  Google Scholar 

  128. PAN Ji-liang, ZHANG Ying, LI Peng, et al. Mechanical properties and thermo-chemical damage constitutive model of granite subjected to thermal and chemical treatments under uniaxial compression [J]. Construction and Building Materials, 2023, 390: 131755. DOI: https://doi.org/10.1016/j.conbuildmat.2023.131755.

    Article  Google Scholar 

  129. JIANG Guang-hui, ZUO Jian-ping, MA Teng, et al. Experimental investigation of wave velocity-permeability model for granite subjected to different temperature processing [J]. Geofluids, 2017: 1–10. DOI: https://doi.org/10.1155/2017/6586438.

  130. ZHANG Jin-yuan, SHEN Yan-jun, YANG Geng-she, et al. Inconsistency of changes in uniaxial compressive strength and P-wave velocity of sandstone after temperature treatments [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(1): 143–153. DOI: https://doi.org/10.1016/j.jrmge.2020.05.008.

    Article  Google Scholar 

  131. ZHANG W, SUN Qiang, ZHANG Yu-liang, et al. Porosity and wave velocity evolution of granite after high-temperature treatment: A review [J]. Environmental Earth Sciences, 2018, 77(9): 350. DOI: https://doi.org/10.1007/s12665-018-7514-3.

    Article  Google Scholar 

  132. SUN Qiang, ZHANG Zhi-zheng, XUE Lei, et al. Physicomechanical properties variation of rock with phase transformation under high temperature [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(5): 935–942. DOI: CNKI:SUN:YSLX.0.2013-05-011. (in Chinese)

    Google Scholar 

  133. HE Ai-lin, WANG Zhi-liang, BI Cheng-cheng. Experimental study on thermal damage characteristics and mechanism of Huashan granite [J]. Hydro-Science and Engineering, 2018, 1: 95–101. DOI: https://doi.org/10.16198/j.cnki.1009-640X.2018.01.014. (in Chinese)

    Google Scholar 

  134. SU Cheng-dong, GUO Wen-bing, LI Xiao-shuang. Experimental research on mechanical properties of coarse sandstone after high temperatures [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 199(6): 1162–1170. DOI: https://doi.org/10.3321/j.issn:1000-6915.2008.06.009. (in Chinese)

    Google Scholar 

  135. ZHENG Hui, LIN Shu-qing. Ultrasonic testing [M]. 2 edition. Beijing: Labor and Social Security of China Press, 2008. (in Chinese)

    Google Scholar 

  136. BIRCH F. The velocity of compressional waves in rocks to 10 kilobars: 1 [J]. Journal of Geophysical Research, 1960, 65(4): 1083–1102. DOI: https://doi.org/10.1029/jz065i004p01083.

    Article  Google Scholar 

  137. BIRCH F. The velocity of compressional waves in rocks to 10 kilobars: 2 [J]. Journal of Geophysical Research, 1961, 66(7): 2199–2224. DOI: https://doi.org/10.1029/jz066i007p02199.

    Article  Google Scholar 

  138. THILL R E, WILLARD R J, BUR T R. Correlation of longitudinal velocity variation with rock fabric [J]. Journal of Geophysical Research, 1969, 74(20): 4897–4909. DOI: https://doi.org/10.1029/jb074i020p04897.

    Article  Google Scholar 

  139. THILL R E, BUR T R, STECKLEY R C. Velocity anisotropy in dry and saturated rock spheres and its relation to rock fabric [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1973, 10(6): 535–557. DOI: https://doi.org/10.1016/0148-9062(73)90004-1.

    Article  Google Scholar 

  140. WYLLIE M R J, GREGORY A R, GARDNER L W. Elastic wave velocities in heterogeneous and porous media [J]. Geophysics, 1956, 21(1): 41–70. DOI: https://doi.org/10.1190/1.1438217.

    Article  Google Scholar 

  141. HUDSON J A. The excitation and propagation of elastic waves [M]. England: Cambridge University Press, 1980: 226.

    Google Scholar 

  142. SAYERS C M. Stress-induced ultrasonic wave velocity anisotropy in fractured rock [J]. Ultrasonics, 1988, 26(6): 311–317. DOI: https://doi.org/10.1016/0041-624x(88)90028-5.

    Article  Google Scholar 

  143. SHI Ge, SHEN Lian-di. Evaluations of the lithological character and physical property of rocks from the relation between wave velocity and pressure—An experimental study [J]. Chinese Journal of Geophysics, 1990, 33(2): 212–219. DOI: CNKI:SUN:DQWX.0.1990-02-014. (in Chinese)

    Google Scholar 

  144. WEPFER W W, CHRISTENSEN N I. A seismic velocity-confining pressure relation, with applications [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1991, 28(5): 451–456. DOI: https://doi.org/10.1016/0148-9062(91)90083-x.

    Article  Google Scholar 

  145. FREUND D. Ultrasonic compressional and shear velocities in dry clastic rocks as a function of porosity, clay content, and confining pressure [J]. Geophysical Journal International, 1992, 108(1): 125–135. DOI: https://doi.org/10.1111/j.1365-246X.1992.tb00843.x.

    Article  Google Scholar 

  146. GREENFIELD R J, GRAHAM E K. Application of a simple relation for describing wave velocity as a function of pressure in rocks containing microcracks [J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B3): 5643–5652. DOI: https://doi.org/10.1029/95jb03462.

    Article  Google Scholar 

  147. HUANG Xiao-jun, BURNS D R, TOKSOZ M N. The effect of stresses on the sound velocity in rocks: Theory of acoustoelasticity and experimental measurements [R]. Massachusetts Institute of Technology Earth Resources Laboratory, 2001. http://hdl.handle.net/172L1/68599.

  148. XU Feng-lin, CHEN Qiao, ZHU Hong-lin, et al. Response analysis of shale bedding structure to ultrasonic characteristics and its application [J]. Petroleum Exploration and Development, 2019, 46(1): 82–92. DOI: https://doi.org/10.1016/S1876-3804(19)30007-2.

    Article  Google Scholar 

  149. WANG Pei-ta. Uniaxial compression test and numerical simulation of stratified biotite granulite [J]. Journal of Northeastern University (Natural Science), 2015, 36(11): 1633–1637. DOI: https://doi.org/10.3969/j.issn.1005-3026.2015.11.025. (in Chinese)

    Google Scholar 

  150. WANG Pei-tao, REN Fen-hua, MIAO Sheng-jun, et al. Evaluation of the anisotropy and directionality of a jointed rock mass under numerical direct shear tests [J]. Engineering Geology, 2017, 225: 29–41. DOI: https://doi.org/10.1016/j.enggeo.2017.03.004.

    Article  Google Scholar 

  151. ZHANG Xue-jun, TANG Si-yi, ZHAO Heng-yue, et al. Research status and key technologies of 3D printing [J]. Journal of Materials Engineering, 2016, 44(2): 122–128. DOI: https://doi.org/10.11868/j.issn.1001-4381.2016.02.019. (in Chinese)

    Google Scholar 

  152. WANG Pei-tao, LIU Yu, ZHANG Liang, et al. Preliminary experimental study on uniaxial compressive properties of 3D printed fractured rock models [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(2): 364–373. DOI: https://doi.org/10.13722/j.cnki.jrme.2017.1039. (in Chinese)

    Google Scholar 

  153. WANG Pei-tao, REN Fen-hua, TAN Wen-hui, et al. Model of roughness discrete fractures network for uniaxial compressive test and its mechanical properties [J]. Rock and Soil Mechanics, 2017, 38(S1): 70–78. DOI: https://doi.org/10.16285/j.rsm.2017.S1.008. (in Chinese)

    Google Scholar 

  154. GAO Yong-tao, WU Tian-hua, ZHOU Yu. Application and prospective of 3D printing in rock mechanics: A review [J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(1): 1–17. DOI: https://doi.org/10.1007/s12613-020-2119-8.

    Article  Google Scholar 

  155. LI Peng, CAI Mei-feng, GUO Qi-feng, et al. Characteristics and implications of stress state in a gold mine in Ludong area, China [J]. International Journal of Minerals, Metallurgy, and Materials, 2018, 25(12): 1363–1372. DOI: https://doi.org/10.1007/s12613-018-1690-8.

    Article  Google Scholar 

  156. XIE He-ping, MIAO Hong-yan, ZHOU Hong-wei. Development strategy of mining discipline in China during the 14th Five-Year Plan Period [J]. Bulletin of National Natural Science Foundation of China, 2021, 35(6): 856–863. DOI: https://doi.org/10.16262/j.cnki.1000-8217.2021.06.002. (in Chinese)

    Google Scholar 

  157. CAI Mei-fen, JI Dong, GUO Qi-feng. Study of rockburst prediction based on in situ stress measurement and theory of energy accumulation caused by mining disturbance [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(10): 1973–1980. DOI: CNKI:SUN:YSLX.0.2013-10-003. (in Chinese)

    Google Scholar 

  158. HE Xue-qiu, ZHOU Chao, SONG Da-zhao, et al. Mechanism and monitoring and early warning technology for rockburst in coal mines [J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(7): 1097–1111. DOI: https://doi.org/10.1007/s12613-021-2267-5.

    Article  Google Scholar 

  159. LI Peng, CAI Mei-feng, WANG Pei-tao, et al. Mechanical properties and energy evolution of jointed rock specimens containing an opening under uniaxial loading [J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(12): 1875–1886. DOI: https://doi.org/10.1007/s12613-020-2237-3.

    Article  Google Scholar 

  160. CAI Mei-feng, CHEN Chang-zhen, PENG Hua, et al. In-situ stress measurement by hydraulic fracturing technique in deep position of wanfu coal mine [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(5): 1069–1074. DOI: https://doi.org/10.1093/carcin/bgm010. (in Chinese)

    Google Scholar 

  161. CAI Mei-feng, QIAO Lan, LI Hua-bin. Principles and techniques of in-situ stress measurement [M]. Beijing: Science Press, 1995. (in Chinese)

    Google Scholar 

  162. ZHANG Chong-yuan, WU Man-lu, CHEN Qun-ce, et al. Review of in-situ stress measurement methods [J]. Journal of Henan Polytechnic University (Natural Science), 2012, 31(3): 305–310. DOI: https://doi.org/10.16186/j.cnki.1673-9787.2012.03.005. (in Chinese)

    Google Scholar 

  163. TANG Xiao-ming, WANG He-ming, SU Yuan-da, et al. Inversion for micro pore structure distribution characteristics using cracked porous medium elastic wave theory [J]. Chinese Journal of Geophysics, 2021, 64(8): 22941–2951. DOI: https://doi.org/10.6038/cjg2021O0478. (in Chinese)

    Google Scholar 

  164. ABDELHEDI M, ALOUI M, MNIF T, et al. Ultrasonic velocity as a tool for mechanical and physical parameters prediction within carbonate rocks [J]. Geomechanics and Engineering, 2017, 13(3): 371–384. DOI: https://doi.org/10.12989/gae.2017.13.3.371.

    Google Scholar 

  165. GOH T, RAFEK A G, SERASA A S, et al. Use of ultrasonic velocity travel time to estimate uniaxial compressive strength of granite and schist in Malaysia [J]. Ssains Malays, 2016, 45(2): 185–193.

    Google Scholar 

  166. WU Hai-bo, DONG Shou-hua, LI Dong-hui, et al. Experimental study on dynamic elastic parameters of coal samples [J]. International Journal of Mining Science and Technology, 2015, 25(3): 447–452. DOI: https://doi.org/10.1016/j.ijmst.2015.03.019.

    Article  Google Scholar 

  167. SELÇUK L, NAR A. Prediction of uniaxial compressive strength of intact rocks using ultrasonic pulse velocity and rebound-hammer number [J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2016, 49(1): 67–75. DOI: https://doi.org/10.1144/qjegh2014-094.

    Article  Google Scholar 

  168. CAI Mei-feng, XUE Ding-long, REN Fen-hua. Current status and development strategy of metal mines [J]. Chinese Journal of Engineeringg, 2019, 41(4): 417–426. DOI: https://doi.org/10.13374/j.issn2095-9389.2019.04.001. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WANG Pei-tao provided the concept and edited the draft of manuscript. MA Chi conducted the literature review and wrote the first draft of the manuscript. CAI Mei-feng edited the draft of manuscript.

Corresponding author

Correspondence to Pei-tao Wang  (王培涛).

Ethics declarations

WANG Pei-tao, MA Chi, and CAI Mei-feng declare that they have no conflict of interest.

Additional information

Foundation item: Project(2021YFC2900500) supported by the National Key R&D Program of China; Project(52074020) supported by the National Natural Science Foundation of China; Project(WPUKFJJ2019-06) supported by the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, China; Project(FRF-IDRY-21-001) supported by the Interdisciplinary Research Project for Young Teachers of USTB (Fundamental Research Funds for the Central Universities)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Pt., Ma, C. & Cai, Mf. Relationships between rock ultrasonic properties with loading stresses and challenges in deep mining. J. Cent. South Univ. 30, 3737–3762 (2023). https://doi.org/10.1007/s11771-023-5473-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5473-7

Key words

关键词

Navigation