Skip to main content
Log in

Dynamic modulus and damping ratio characteristics of unsaturated silt in the Yellow River flood field

黄泛区非饱和粉土动模量和阻尼比特性研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The silt in the Yellow River flood field exhibits strong water sensitivity and unique mechanical properties, which makes it vulnerable to vibration load. This study investigates the dynamic elastic modulus and damping ratio characteristics of the silt by considering the influence of confining pressure and saturation through dynamic triaxial tests. Test results indicate that the backbone curves of the silt are consistent with a typical hyperbolic relationship. The dynamic elastic modulus sharply decreases and eventually tends to stabilize with increasing dynamic strain. Furthermore, the dynamic elastic modulus gradually increases with an increment in confining pressure and decrement in saturation, while the damping ratio simultaneously decreases. A binary linear equation can conveniently estimate the dynamic elastic modulus at a small strain. Based on quantitative analyses, a modified Hardin-Drnevich model is preliminarily proposed to calculate the dynamic elastic modulus and damping ratio of the silt. This investigation supplies a theoretical reference for the engineering construction of the Yellow River basin.

摘要

黄泛区粉土水敏感性强, 力学性质独特, 易受振动荷载的影响。本文通过循环三轴试验, 研究 固结围压和饱和度对黄泛区粉土动模量、阻尼比特性的影响。研究结果表明, 黄泛区粉土骨干曲线符 合双曲线关系;随动应变的增大, 黄泛区粉土动弹性模量先急剧减小而后逐渐趋于稳定; 随固结围压 的增大和饱和度的减小, 粉土动弹性模量逐渐增大, 阻尼比则逐渐减小; 二元线性方程可用于估算最 大动弹性模量随固结围压和饱和度的变化规律, 修正Hardin-Drnevich 模型可较为准确预测黄泛区非饱 和粉土的动弹性模量和阻尼比。本研究可为黄河流域工程建设提供理论支撑。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. MA Hong-bo, NITTROUER J A, NAITO K, et al. The exceptional sediment load of fine-grained dispersal systems: Example of the Yellow River, China [J]. Science Advances, 2017, 3(5): e1603114. DOI: https://doi.org/10.1126/sciadv.1603114.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  2. CHU Zhong-xin. The dramatic changes and anthropogenic causes of erosion and deposition in the lower Yellow (Huanghe) River since 1952 [J]. Geomorphology, 2014, 216: 171–179. DOI: https://doi.org/10.1016/j.geomorph.2014.04.009.

    Article  ADS  Google Scholar 

  3. JIN Qing, ZHENG Ying-jie, CUI Xin-zhuang, et al. Evaluation of dynamic characteristics of silt in Yellow River Flood Field after freeze-thaw cycles [J]. Journal of Central South University, 2020, 27(7): 2113–2122. DOI: https://doi.org/10.1007/s11771-020-4434-7.

    Article  CAS  Google Scholar 

  4. LI Ke-sheng, LI Quan-xin, GENG Yu-han, et al. An evaluation of the effects of microstructural characteristics and frost heave on the remediation of saline-alkali soils in the Yellow River Delta, China [J]. Land Degradation & Development, 2021, 32(3): 1325–1337. DOI: https://doi.org/10.1002/ldr.3801.

    Article  MathSciNet  Google Scholar 

  5. CUI L, SHENG Q, NIU Zhen-zhen, et al. Deformation behavior of saturated marine silt under principal stress rotation as induced by wave loading [J]. Applied Sciences, 2021, 11(20): 9458. DOI: https://doi.org/10.3390/app11209458.

    Article  Google Scholar 

  6. CHEN Yun-min, MA Sheng-nan, REN Yu, et al. Experimental study on cyclic settlement of piles in silt soil and its application in high-speed railway design [J]. Transportation Geotechnics, 2021, 27: 100496. DOI: https://doi.org/10.1016/j.trgeo.2020.100496.

    Article  Google Scholar 

  7. UPRETI K, LEONG E C, VRETTOS C. Effect of mean grain size on shear modulus degradation and damping ratio curves of sands [J]. Géotechnique, 2023, 73(9): 840–842. DOI: https://doi.org/10.1680/jgeot.21.00155.

    Article  Google Scholar 

  8. LI Wei, LANG Lei, WANG Da, et al. Investigation on the dynamic shear modulus and damping ratio of steel slag sand mixtures [J]. Construction and Building Materials, 2018, 162: 170–180. DOI: https://doi.org/10.1016/J.CONBUILDMAT.2017.12.026.

    Article  Google Scholar 

  9. MAHESHWARI B K, KIRAR B. Dynamic properties of soils at low strains in Roorkee region using resonant column tests [J]. International Journal of Geotechnical Engineering, 2019, 13(5): 399–410. DOI: https://doi.org/10.1080/19386362.2017.1365474.

    Article  Google Scholar 

  10. YANG Li-guo, SHAO Sheng-jun, WANG Zhi. Experimental study on the dynamic modulus and damping ratio of compacted loess under circular dynamic stress paths [J]. Advances in Civil Engineering, 2021, 2021: 1–15. DOI: https://doi.org/10.1155/2021/9574548.

    Google Scholar 

  11. ZHANG Jian, CAO Jiu-ting, HUANG Si-jie, et al. Experimental study on the dynamic shear modulus and damping ratio of saturated sand under cyclic loading [J]. Materiali in Tehnologije, 2021, 55(5): 741–749. DOI: https://doi.org/10.17222/mit.2021.230.

    Article  Google Scholar 

  12. ZHOU C, NG C W W. Effects of temperature and suction on plastic deformation of unsaturated silt under cyclic loads [J]. Journal of Materials in Civil Engineering, 2016, 28(12): 04016170. DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0001685.

    Article  Google Scholar 

  13. NG C W W, ZHOU C. Cyclic behaviour of an unsaturated silt at various suctions and temperatures [J]. Géotechnique, 2014, 64(9): 709–720. DOI: https://doi.org/10.1680/geot.14.p.015.

    Article  Google Scholar 

  14. YANG Wei-feng, PAN Bao-liu, JIN Lu, et al. Experimental study on dynamic characteristics of Qingyang loess under different water contents [J]. Arabian Journal of Geosciences, 2020, 13(19): 1–9. DOI: https://doi.org/10.1007/s12517-020-05989-1.

    Article  CAS  Google Scholar 

  15. SADEGHI H, KIANI M, SADEGHI M, et al. Geotechnical characterization and collapsibility of a natural dispersive loess [J]. Engineering Geology, 2019, 250: 89–100. DOI: https://doi.org/10.1016/j.enggeo.2019.01.015.

    Article  Google Scholar 

  16. LI Xuan, SUN De-an, ZHANG Jun-ran. Effect of suction history on dynamic deformation characteristics of unsaturated silt [J]. Rock and Soil Mechanics, 2018, 39(8): 2829–2836. DOI: https://doi.org/10.16285/j.rsm.2017.0667. (in Chinese)

    Google Scholar 

  17. JIA Lei, SUN De-an, HAO Fei. Dynamic deformation characteristics of unsaturated silt under suction control [J]. Journal of Shanghai University (Natural Science Edition), 2015, 21(1): 117–127. (in Chinese)

    Google Scholar 

  18. SUN De-an, WU Bo. Study on dynamic modulus and damping ratio of unsaturated silt [J]. Journal of Hydraulic Engineering, 2012, 43(9): 1108–1113, 1120. DOI: https://doi.org/10.13243/j.cnki.slxb.2012.09.004. (in Chinese)

    Google Scholar 

  19. WU Shi-ming, GRAY D H, RICHART F E. Capillary effects on dynamic modulus of sands and silts [J]. Journal of Geotechnical Engineering, 1984, 110(9): 1188–1203. DOI: https://doi.org/10.1061/(asce)0733-9410(1984)110:9(1188).

    Article  Google Scholar 

  20. SIVAKUMAR V, KODIKARA J, O’HAGAN R, et al. Effects of confining pressure and water content on performance of unsaturated compacted clay under repeated loading [J]. Géotechnique, 2013, 63(8): 628–640. DOI: https://doi.org/10.1680/geot.10.p.103.

    Article  Google Scholar 

  21. HUANG Chang-xi, WANG Xing-hua, ZHOU Hao, et al. Dynamic elastic modulus and damping ratio of unsaturated red clay [J]. Geotechnical and Geological Engineering, 2020, 38(1): 873–881. DOI: https://doi.org/10.1007/s10706-019-01117-3.

    Article  Google Scholar 

  22. ZHAO Fu-tang, CHANG Li-jun, ZHANG Wu-yu. Experimental investigation of dynamic shear modulus and damping ratio of Qinghai-Tibet frozen silt under multi-stage cyclic loading [J]. Cold Regions Science and Technology, 2020, 170: 102938. DOI: https://doi.org/10.1016/j.coldregions.2019.102938.

    Article  Google Scholar 

  23. JANA A, STUEDLEIN A W. Monotonic, cyclic, and postcyclic responses of an alluvial plastic silt deposit [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147(3): 04020174. DOI: https://doi.org/10.1061/(asce)gt.1943-5606.0002462.

    Article  Google Scholar 

  24. ZHAO Kai, QIN You, LU Qing-rui, et al. Cyclic resistance of saturated silt under wave-induced non-proportional loading [J]. Applied Ocean Research, 2020, 102: 102296. DOI: https://doi.org/10.1016/j.apor.2020.102296.

    Article  Google Scholar 

  25. PRICE A B, DEJONG J T, BOULANGER R W. Cyclic loading response of silt with multiple loading events [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(10): 04017080. DOI: https://doi.org/10.1061/(asce)gt.1943-5606.0001759.

    Article  Google Scholar 

  26. SONG Bing-hui, SUN Yong-fu, SONG Yu-peng, et al. Post-liquefaction re-compaction effect on the cyclic behavior of natural marine silty soil in the Yellow River delta [J]. Ocean Engineering, 2020, 195: 106753. DOI: https://doi.org/10.1016/j.oceaneng.2019.106753.

    Article  Google Scholar 

  27. GB/T 50123—2019. Standard for soils test method of China [S]. Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Beijing, 2019. (in Chinese)

    Google Scholar 

  28. CUI Xin-zhuang, LI Xiang-yang, HAO Jian-wen, et al. Dynamic response of unsaturated poroelastic ground underlying uneven pavement subjected to vehicle load [J]. Soil Dynamics and Earthquake Engineering, 2022, 156: 107164. DOI: https://doi.org/10.1016/j.soildyn.2022.107164.

    Article  Google Scholar 

  29. SAGLAM S, BAKIR B S. Cyclic response of saturated silts [J]. Soil Dynamics and Earthquake Engineering, 2014, 61 – 62: 164–175. DOI: https://doi.org/10.1016/j.soildyn.2014.02.011.

    Article  Google Scholar 

  30. CHANEY R C, DEMARS K R, FENG Z Y, et al. Dynamic properties of granulated rubber/sand mixtures [J]. Geotechnical Testing Journal, 2000, 23(3): 338. DOI: https://doi.org/10.1520/gtj11055j.

    Article  Google Scholar 

  31. DING Yu, CHEN Xiao-bin, WANG Xuan, et al. Experimental investigation into dynamic elastic modulus and damping ratio in transient saturated zone of red sandstone residual soil subgrade [J]. Journal of South China University of Technology (Science and Technology), 2019, 47(11): 130–139. (in Chinese)

    Google Scholar 

  32. SU Y Q, MA W, ZHONG X M, et al. Experimental study of influence of freeze-thaw cycles on damping ratio of remolded qinghai—Tibet silty clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2960–2967. DOI: https://doi.org/10.13722/j.cnki.jrme.2020.0654. (in Chinese)

    Google Scholar 

  33. ALONSO E E, PEREIRA J M, VAUNAT J, et al. A microstructurally based effective stress for unsaturated soils [J]. Géotechnique, 2010, 60(12): 913–925. DOI: https://doi.org/10.1680/geot.8.p.002.

    Article  Google Scholar 

  34. HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: Measurement and parameter effects (terzaghi leture) [J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(6): 603–624. DOI: https://doi.org/10.1061/jsfeaq.0001756.

    Article  Google Scholar 

  35. DARENDELI M. Development of a new family of normalized moduli reduction and material damping curves [D]. Austin: University of Texas at Austin, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

PENG Fei provided the concept and edited the draft of manuscript. LI Meng-yao analyzed the measured data and established the models. LI Yong-hui and HUANG Mao-song edited the draft of manuscript and revised the final version.

Corresponding author

Correspondence to Yong-hui Li  (李永辉).

Ethics declarations

PENG Fei, LI Meng-yao, LI Yong-hui and HUANG Mao-song declare that they have no conflict of interest.

Additional information

Foundation item: Project(222300420555) supported by the Natural Science Foundation of Henan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, F., Li, My., Li, Yh. et al. Dynamic modulus and damping ratio characteristics of unsaturated silt in the Yellow River flood field. J. Cent. South Univ. 31, 237–249 (2024). https://doi.org/10.1007/s11771-023-5455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5455-9

Key words

关键词

Navigation