Skip to main content
Log in

Gradient descent based restoration method of track irregularity in asymmetric chord reference method

非对称弦测法中基于梯度下降的轨道不平顺复原方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This paper proposes a gradient descent based restoration method of track irregularity. Based on the theory of asymmetric chord-reference method (CRM), the restoration of track irregularity is described as an optimization problem for an underdetermined linear system. Gradient descent method is employed to solve this optimization problem, where a quadratic cost function considering penalization is used. To evaluate the performance of the proposed method, an inspection trolley was setup and used in a field test on a scaled bridge model. Comparison between the proposed method and level measurement validates a good accuracy of gradient descent based restoration method. Compared with traditional method which needs a specially designed inverse filter, the proposed method has a clear physical meaning, which only needs configuration of asymmetric CRM and measured chord reference value to establish the optimization model. This suggests that gradient descent method has good operability in the field test. And the repeatability assessment reveals that the proposed method has a good track irregularity restoration reproduction capacity.

摘要

本研究提出了一种基于梯度下降的轨道不平顺复原方法。基于非对称弦测法理论,轨道不平顺 的复原过程可描述为一个欠定线性系统的优化问题。本文提出采用梯度下降法求解该优化问题,采用 了考虑正则项的二次型代价函数。为了评估所提出方法的性能,本研究搭建了一个轨道检测小车,并 在一个缩尺桥梁模型上进行了现场试验。通过与水准仪测量值的比较,验证了基于梯度下降轨道不平 顺复原方法具有良好精度。与传统的需要专门设计逆滤波器的轨道不平顺复原方法相比,本研究所提 出的方法物理意义明确,只需基于非对称弦测法原理建立优化模型,这表明本方法在现场实测中具有 良好的可操作性。此外,重复性评估表明,在调整不同的弦长以及多次重复测量时,本研究所提出的 方法可复现一致的轨道不平顺结果,表明该方法具有良好的测量重复性。本研究所提出的方法可对轨 道不平顺进行准确复原,为轨道平顺性状态及时有效评估提供数据支撑,进而保证列车运行的平稳与 安全。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. YANG Chang-wei, SUN Hai-ling, ZHANG Jian-jing, et al. Dynamic responses of bridge-approach embankment transition section of high-speed rail [J]. Journal of Central South University, 2013, 20(10): 2830–2839. DOI: https://doi.org/10.1007/s11771-013-1803-5.

    Article  Google Scholar 

  2. LIU Xiang, JIANG Li-zhong, XIANG Ping, et al. Dynamic response limit of high-speed railway bridge under earthquake considering train safety performance [J]. Journal of Central South University, 2021, 28(3): 968–980. DOI: https://doi.org/10.1007/s1171-021-4657-2.

    Article  Google Scholar 

  3. XIANG Jun, ZENG Qing-yuan, LOU Ping. Theory of random energy analysis for train derailment [J]. Journal of Central South University of Technology, 2003, 10(2): 134–139. DOI: https://doi.org/10.1007/s11771-003-0055-1.

    Article  Google Scholar 

  4. XIA He, ZHANG Nan, GUO Wei-wei. Self-excitations of train-bridge coupling vibration system [M]// Dynamic Interaction of Train-Bridge Systems in High-Speed Railways. Berlin, Heidelberg: Springer, 2018: 149–190.

    Chapter  Google Scholar 

  5. NIU Liu-bin, LIU Jin-zhao, ZHOU Yun-lai. Track irregularity assessment in high-speed rail by incorporating carriage-body acceleration with transfer function [J]. Mathematical Problems in Engineering, 2020, 2020: 1–16. DOI: https://doi.org/10.1155/2020/8414531.

    Google Scholar 

  6. MAO Jian-feng, XIAO Yuan-jie, YU Zhi-wu, et al. Probabilistic model and analysis of coupled train-ballasted track-subgrade system with uncertain structural parameters [J]. Journal of Central South University, 2021, 28(7): 2238–2256. DOI: https://doi.org/10.1007/s11771-021-4765-z.

    Article  Google Scholar 

  7. YAZAWA E, TAKESHITA K. Development of measurement device of track irregularity using inertial mid-chord offset method [J]. Quarterly Report of RTRI, 2002, 43(3): 125–130. DOI: https://doi.org/10.2219/rtriqr.43.125.

    Article  Google Scholar 

  8. SUN Bo. Research and application of dynamic detection technology on track inspecting [J]. China Safety Science Journal, 2020, 30(S1): 109–114. DOI: https://doi.org/10.16265/j.cnki.issn1003-3033.2020.S1.020. (in Chinese)

    MathSciNet  Google Scholar 

  9. INSA R, INAREJOS J, SALVADOR P, et al. On the filtering effects of the chord offset method for monitoring track geometry [J]. Proceedings of the Institution of Mechanical Engineers F, 2012, 226(6): 650–654. DOI: https://doi.org/10.1177/0954409712447481.

    Article  Google Scholar 

  10. MATSUOKA K, TANAKA H, KAWASAKI K, et al. Drive-by methodology to identify resonant bridges using track irregularity measured by high-speed trains [J]. Mechanical Systems and Signal Processing, 2021, 158: 107667. DOI: https://doi.org/10.1016/j.ymssp.2021.107667.

    Article  Google Scholar 

  11. CHEN Shi-ming, WANG Hao, LI Hai-lang, et al. On-board dynamic measuring of long-wave track irregularity based on visual inertial fusion [J]. Journal of Physics: Conference Series, 2022, 2396(1): 012036. DOI: https://doi.org/10.1088/1742-6596/2396/1/012036.

    Google Scholar 

  12. KAMPCZYK A. Magnetic-measuring square in the measurement of the circular curve of rail transport tracks [J]. Sensors, 2020, 20(2): 560.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. QUIROGA L, SCHNIEDER E. Railway systems [M]//CZICHOS H, ed. Handbook of Technical Diagnostics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 519–537. DOI: https://doi.org/10.1007/978-3-642-25850-3_26.

    Chapter  Google Scholar 

  14. KOSUKEGAWA K, MORI Y, SUYARI H, et al. Spatiotemporal forecasting of vertical track alignment with exogenous factors [J]. Scientific Reports, 2023, 13: 2354. DOI: https://doi.org/10.1038/s41598-023-29303-7.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. TANAKA H, SHIMIZU A. Practical application of portable trolley for the continuous measurement of rail surface roughness for rail corrugation maintenance [J]. Quarterly Report of RTRI, 2016, 57(2): 118–124. DOI: https://doi.org/10.2219/rtriqr.57.2_118.

    Article  Google Scholar 

  16. TB 10621-2014. Code for design of high speed railway[S]. National Railway Administration of People’s Republic of China, 2014. (in Chinese)

  17. YANG Fei, SUN Xian-fu, TAN She-hui, et al. Evaluation difference of dynamic and static track irregularity and characteristics of dynamic chord measurement method [J]. Journal of Southwest Jiaotong University, 2022, 57(6): 1239–1249. DOI: https://doi.org/10.3969/j.issn.0258-2724.20210732. (in Chinese)

    Google Scholar 

  18. TSAI H, WANG C Y, HUANG N. Fast inspection and identification techniques for track irregularities based on HHT analysis [J]. Advances in Adaptive Data Analysis, 2012, 4(01n02): 1250016. DOI: https://doi.org/10.1142/S1793536912500161.

    Article  MathSciNet  Google Scholar 

  19. WANG Ping, WANG Yuan, TANG Hui-yue, et al. Error theory of chord-based measurement system regarding track geometry and improvement by high frequency sampling [J]. Measurement, 2018, 115: 204–216. DOI: https://doi.org/10.1016/j.measurement.2017.10.019.

    Article  ADS  Google Scholar 

  20. CHENG Ying, XU Yu-de, ZHOU Yu, et al. Theory and research of asymmetrical chord offset method of restoring a waveform of track irregularity [J]. Journal of East China Jiaotong University, 2011, 28(1): 42–46. DOI: https://doi.org/10.3969/j.issn.1005-0523.2011.01.009. (in Chinese)

    Google Scholar 

  21. WANG Shao-feng, XU Yu-de, ZHOU Yu, et al. Study of rail surface irregularity detection based on asymmetrical chord offset method [C]// Proceedings of the 2012 Third International Conference on Mechanic Automation and Control Engineering. 2012: 829–832. DOI: https://doi.org/10.1109/MACE.2012.217.

  22. XU Yu-de, CHEN Wen, LI Hai-feng, et al. Rail surface detection method based on asymmetrical chord offset method: China, CN103174072A[P]. 2013-06-26. (in Chinese)

  23. WANG Yuan, TANG Hui-yue, WANG Ping, et al. Multipoint chord reference system for track irregularity: Part I–Theory and methodology [J]. Measurement, 2019, 138: 240–255. DOI: https://doi.org/10.1016/j.measurement.2019.01.080.

    Article  ADS  Google Scholar 

  24. LI Yan-fu, LIU Hong-li, MA Zi-ji, et al. Rail corrugation broadband measurement based on combination-chord model and LS[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(4): 938–949. DOI: https://doi.org/10.1109/TIM.2017.2789067.

    Article  ADS  Google Scholar 

  25. YOSHIMURA A, MORI T. Application for restoring the original waveform of railway track irregularity [J]. Railway Technology, 1986, 43(5): 177–180.

    Google Scholar 

  26. YOSHIMURA A. Theory and practice for restoring an original waveform of a railway track irregularity [J]. Quarterly Reports of RTRI, 1995, 36(2): 85–94.

    Google Scholar 

  27. CHUNG W J, HAM Y S. Investigation of the track irregularities reconstruction methods [J]. Key Engineering Materials, 2004, 270–273: 1659–1664. DOI: https://doi.org/10.4028/www.scientific.net/kem.270-273.1659.

    Article  Google Scholar 

  28. MAO Xiao-jun, XU Yu-de, ZHOU Yu. Detection and recovery algorithm of rail surface short wavelength irregularities based on chord measuring method [C]// ICTE 2013. Chengdu, China. Reston, VA: American Society of Civil Engineers, 2013. DOI: https://doi.org/10.1061/9780784413159.296.

    Google Scholar 

  29. AKNIN P, CHOLLET H. A new approach for the modelling of track geometry recording vehicles and the deconvolution of versine measurements [J]. Vehicle System Dynamics, 1999, 33(S1): 59–70. DOI: https://doi.org/10.1080/00423114.1999.12063070.

    Article  Google Scholar 

  30. BERGGREN E G, NISSEN A, PAULSSON B S. Track deflection and stiffness measurements from a track recording car [J]. Proceedings of the Institution of Mechanical Engineers F, 2014, 228(6): 570–580. DOI: https://doi.org/10.1177/0954409714529267.

    Article  Google Scholar 

  31. HAIGERMOSER A, LUBER B, RAUH J, et al. Road and track irregularities: Measurement, assessment and simulation [J]. Vehicle System Dynamics, 2015, 53(7): 878–957. DOI: https://doi.org/10.1080/00423114.2015.1037312.

    Article  ADS  Google Scholar 

  32. GOLUB G H, HANSEN P C, O’LEARY D P. Tikhonov regularization and total least squares [J]. SIAM Journal on Matrix Analysis and Applications, 1999, 21(1): 185–194. DOI: https://doi.org/10.1137/s0895479897326432.

    Article  MathSciNet  Google Scholar 

  33. PETERSEN K B, PEDERSEN M S. The Matrix Cookbook [M]. Technical University of Denmark, 2008.

  34. LU Jun. Gradient descent, stochastic optimization, and other tales [J]. arXiv preprint arXiv: 2205.00832, 2022. DOI: https://doi.org/10.48550/arXiv.2205.00832.

  35. PIPER R. An overview of gradient descent optimization algorithms [J]. arXiv preprint arXiv:1609.04747, 2016. DOI: https://doi.org/10.48550/arXiv.1609.04747.

  36. YU Jian, JIANG Li-zhong, ZHOU Wang-bao, et al. Running test on high-speed railway track-simply supported girder bridge systems under seismic action [J]. Bulletin of Earthquake Engineering, 2021, 19(9): 3779–3802. DOI: https://doi.org/10.1007/s10518-021-01125-w.

    Article  Google Scholar 

  37. MAO Xiao-jun, XU Yu-de, ZHOU Yu. Rail short wave irregularities restoration algorithm based on digital inverse filter technology [J]. Advanced Materials Research, 2013, 779 – 780: 530–533. DOI: https://doi.org/10.4028/www.scientific.net/amr.779-780.530.

    Article  Google Scholar 

  38. CONG Jian-li, TANG Hui-yue, WANG Yuan, et al. Experimental and numerical investigations of asymmetric chord-reference system regarding track geometry measurement [J]. Measurement, 2021, 182: 109743. DOI: https://doi.org/10.1016/j.measurement.2021.109743.

    Article  Google Scholar 

  39. LI Yan-fu, LIU Hong-li, MA Zi-ji. Trend extraction of rail corrugation measured dynamically based on the relevant low-frequency principal components reconstruction [J]. Measurement Science and Technology, 2016, 27(10): 105005. DOI: https://doi.org/10.1088/0957-0233/27/10/105005.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZENG Chen carried out the experiment and writed the draft of manuscript. GUO Wei provided the financial support for the project leading to this publication. LIU Han-yun edited the first draft of the manuscript. YU Zhi-wu provided the concept. JIANG Li-zhong conducted the literature review. GUO Zhen verified the overall reproducibility of results. TAN Sui reviewed and revised the manuscript.

Corresponding author

Correspondence to Wei Guo  (国巍).

Ethics declarations

ZENG Chen, GUO Wei, LIU Han-yun, YU Zhi-wu, JIANG Li-zhong, GUO Zhen and TAN Sui declare that they have no conflict of interest.

Additional information

Foundation item: Projects(52022113, 52278546, 52108433) supported by the National Natural Science Foundation of China; Project (2023QYJC009) supported by the Central South University Research Program of Advanced Interdisciplinary Studies, China; Project(2023ZZTS0364) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, C., Guo, W., Liu, Hy. et al. Gradient descent based restoration method of track irregularity in asymmetric chord reference method. J. Cent. South Univ. 31, 288–301 (2024). https://doi.org/10.1007/s11771-023-5449-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5449-7

Key words

关键词

Navigation