Skip to main content
Log in

Energy evolution and failure characteristics of sandstone under high temperature and acidic solutions

高温和酸性环境作用下砂岩的能量演化规律与破坏特征研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Sandstone is commonly found in mountainous regions of China, and the mountain tunnels are often built in sandstone strata. The tunnel surrounding rocks often suffer from elevated temperature and acidic solutions during tunnel construction and operation. In this study, the energy evolution and failure characteristics of sandstones under elevated temperature and acidic solutions were investigated by observing the compressive strength, elastic deformation energy density, dissipative energy density, failure mode, and fracture distribution characteristics of sandstone through uniaxial compression tests and computed tomography scanning. The findings indicate that elevated temperature and acidic solutions had a significant impact on the energy distribution and failure mode of sandstone, and their effects on the failure mode and fracture distribution characteristics of sandstone varied at different stages. The influence of elevated temperature on the energy distribution and failure mode of sandstone was more pronounced compared to that of the acidic solution. Furthermore, the elastic deformation energy density and dissipative energy density of sandstone showed a close linear relationship with failure characteristics. These conclusions could provide a theoretical significance for the design and construction of rock structures under complex high-temperature conditions, and associated tunnel projects.

摘要

砂岩广泛分布于中国山岭地区, 隧道经常修建于山岭砂岩地层中, 在隧道施工和运营过程中, 隧道围岩容易受到高温和酸性溶液的共同影响. 本文通过开展单轴压缩试验和计算机断层扫描试验, 研究了高温和酸性溶液作用下砂岩的能量演化规律和破坏特征, 分析了不同条件下砂岩的抗压强度、 弹性应变能密度、 耗散能密度、 破坏模式及裂隙分布特征. 结果表明, 高温和酸性溶液对砂岩的能量分布和破坏模式有显著影响, 且在不同阶段对砂岩的破坏模式和裂隙分布特征的影响各有差异, 高温对砂岩能量分布和破坏模式的影响比酸性溶液对其影响更为明显; 此外, 砂岩的弹性应变能及耗散能与破坏特征呈明显的线性关系. 本研究可以为复杂高温条件下隧道设计及施工和相关隧道工程的稳定性提供理论依据.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. LIU Rong, HE Yi, ZHAO Yun-feng. Tunnel construction ventilation frequency-control based on radial basis function neural network[J]. Automation in Construction, 2020, 118: 103293. DOI: https://doi.org/10.1016/jautcon.2020.103293.

    Article  Google Scholar 

  2. JIA You, FAN Xue, ZHAO Xue-juan. Investigation of the maximum tunnel ceiling temperature caused by two fires[J]. Journal of Thermal Science, 2022, 178: 107596. DOI: https://doi.org/10.1016/j.ijthermalsci.2022.107596.

    Google Scholar 

  3. REN Rui, ZHOU Hui, HU Zhao, et al. Statistical analysis of fire accidents in Chinese highway tunnels 2000 - 2016[J]. Tunnelling and Underground Space Technology, 2019, 83: 452–460. DOI: https://doi.org/10.1016/j.tust.2018.10.008.

    Article  Google Scholar 

  4. TIAN Shi-xiong, TANG Xue-jun, WANG Gang, et al. Investigation and treatment of extensive fire damage in the Xinqidaoliang Tunnel [J]. Modern Tunnelling Technology, 2013, 50(2): 181–186. DOI: 13807/j.cnki.mtt.2013.02.027.

    Google Scholar 

  5. KANG Yan-fei, FAN Jin, JIANG De-yi. Influence of geological and environmental factors on the reconsolidation behavior of fine granular salt[J]. Natural Resources Research, 2021, 30: 805–826. DOI: https://doi.org/10.1007/s11053-020-09732-1.

    Article  Google Scholar 

  6. RANJITH P G, VIETE D R, BAI J C. Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure [J]. Engineering Geology, 2012, 151: 120–127. DOI: https://doi.org/10.1016/j.enggeo.2012.09.007.

    Article  Google Scholar 

  7. GAUTAM P K, VERMA A K, MAHESHWAR S. Thermomechanical analysis of different types of sandstone at elevated temperature [J]. Rock Mechanics and Rock Engineering, 2016, 49: 1982–1993. DOI: https://doi.org/10.1007/s00603-015-0797-8.

    Article  Google Scholar 

  8. YANG Sheng-qi, RANJITH P G, JING Hong-wei. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments [J]. Geothermics, 2017, 65: 180–197. DOI: https://doi.org/10.1016/j.geothermics.2016.09.008.

    Article  Google Scholar 

  9. SUN Hui, SUN Qiang, DENG Wen-ni. Temperature effect on microstructure and P-wave propagation in Linyi sandstone [J]. Applied Thermal Engineering, 2017, 115: 913–922. DOI: https://doi.org/10.1016/j.applthermaleng2017.01.026.

    Article  Google Scholar 

  10. PENG Kang, ZHOU Jia-qi, ZOU Quan-le. Effect of loading frequency on the deformation behaviours of sandstones subjected to cyclic loads and its underlying mechanism [J]. International Journal of Fatigue, 2020, 131: 105349. DOI: https://doi.org/10.1016/j.ijfatigue.2019.105349.83.

    Article  Google Scholar 

  11. WU Fei, ZHOU Xu, YING Ping, et al. A study of uniaxial acoustic emission creep of salt rock based on improved fractional-order derivative [J]. Rock Mechanics and Rock Engineering, 2022, 55(3): 1619–1631. DOI: https://doi.org/10.1007/s00603-021-02741-3.

    Article  Google Scholar 

  12. ZHOU Xiao-ping, LI Guo-qing, MA Hai-chun. Real-time experiment investigations on the coupled thermomechanical and cracking behaviors in granite containing three preexisting fissures [J]. Engineering Fracture Mechanics, 2020, 224: 106797. DOI: https://doi.org/10.1016/j.engfracmech.2019.106797.

    Article  Google Scholar 

  13. ZHOU Xiao-ping, FU Liang, CHENG Hao, et al. Cracking behaviours of rock-like materials containing three preexisting flaws after high-temperature treatments [J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 44(3): 622–635. DOI: https://doi.org/10.1111/ffe.13382.

    Article  Google Scholar 

  14. PAN Xiao-kang, ZHOU Xiao-ping. Damage analysis of sandstone during the creep stage after high-temperature heat treatment based on NMR technology [J]. Rock Mechanics and Rock Engineering, 2022, 55(12): 7569–7586. DOI: https://doi.org/10.1007/s00603-022-03048-7.

    Article  MathSciNet  Google Scholar 

  15. PAN Xiao-kang, BERTO F, ZHOU Xiao-ping. Creep damage behaviors of red sandstone subjected to uniaxial compression after high-temperature heat treatment using acoustic emission technology [J]. Fatigue & Fracture of Engineering Materials & Structures, 2022, 45(1): 302–322. DOI: https://doi.org/10.1111/ffe.13605.

    Article  Google Scholar 

  16. WANG Yun-teng, ZHOU Xiao-ping, KOU Miao. An improved coupled thermo-mechanic bond-based peridynamic model for cracking behaviors in brittle solids subjected to thermal shocks [J]. European Journal of Mechanics–A/Solids, 2018, 73: 282–305. DOI: https://doi.org/10.1016/j.euromechsol.2018.09.007.

    Article  MathSciNet  MATH  Google Scholar 

  17. WANG Yun-teng, ZHOU Xiao-ping, KOU Miao. Peridynamic investigation on thermal fracturing behavior of ceramic nuclear fuel pellets under power cycles [J]. Ceramics International, 2018, 44: 11512–11542. DOI: https://doi.org/10.1016/j.ceramint.2018.03.214.

    Article  Google Scholar 

  18. WANG Fei, FRÜHWIRT T. Influence of repeated heating on physical-mechanical properties and damage evolution of granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 136: 104514. DOI: https://doi.org/10.1016/j.ijrmms.2020.104514.

    Article  Google Scholar 

  19. ZHANG Bo, TIAN Hong, DOU Bin. Macroscopic and microscopic experimental research on granite properties after high-temperature and water-cooling cycles [J]. Geothermics, 2021, 93: 102079. DOI: https://doi.org/10.1016/j.geothermics.2021.102079.

    Article  Google Scholar 

  20. ZHAO Zhen-long, HONG Wen-jiang, JIANG Yu. Experimental investigation on damage characteristics and fracture behaviors of granite after high temperature exposure under different strain rates [J]. Theoretical and Applied Fracture Mechanics, 2020, 110: 102823. DOI: https://doi.org/10.1016/j.tafmec.2020.102823.

    Article  Google Scholar 

  21. PENG Kang, LV Hong, ZOU Quan-le, et al. Evolutionary characteristics of mode-I fracture toughness and fracture energy in granite from different burial depths under high-temperature effect [J]. Engineering Fracture Mechanics, 2020, 239: 107306. DOI: https://doi.org/10.1016/j.engfracmech.2020.107306.

    Article  Google Scholar 

  22. XIE He-ping, LI Li-yun, PENG Rui-dong. Energy analysis and criteria for structural failure of rocks [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2009, 1: 11–20. DOI: https://doi.org/10.3724/SP.J.1235.2009.00011.

    Article  Google Scholar 

  23. GAO Ren-bo, WU Fei, CHEN Jie, et al. Accurate characterization of triaxial deformation and strength properties of salt rock based on logarithmic strain [J]. Journal of Energy Storage, 2022, 51: 104484. DOI: https://doi.org/10.1016/j.est.2022.104484.

    Article  Google Scholar 

  24. PENG Rui-dong, JU Yang, WANG J G. Energy dissipation and release during coal failure under conventional triaxial compression [J]. Rock Mechanics and Rock Engineering, 2015, 48: 509–526. DOI: https://doi.org/10.1007/s00603-014-0602-0.

    Article  Google Scholar 

  25. DENG Yong, CHEN Mian, JIN Yin, et al. Theoretical analysis and experimental research on the energy dissipation of rock crushing based on fractal theory [J]. Journal of Natural Gas Science and Engineering, 2016, 33: 231–239. DOI: https://doi.org/10.1016/j.jngse.2016.05.020.

    Article  Google Scholar 

  26. BAÑKA P, CHMIELA A. Predicting changes in induced seismicity on the basis of estimated rock mass energy states [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 95: 79–86. DOI: https://doi.org/10.1016/j.ijrmms.2017.03.010.

    Article  Google Scholar 

  27. XIAO Wei-jing, YU Guo. Experimental study on the failure process of sandstone subjected to cyclic loading and unloading after high temperature treatment [J]. Engineering Geology, 2021, 293: 106305. DOI: https://doi.org/10.1016/j.enggeo.2021.106305.

    Article  Google Scholar 

  28. YIN Tu-bing, PENG Kang, WANG Liang. Study on impact damage and energy dissipation of coal rock exposed to high temperatures [J]. Shock and Vibration, 2016, 21: 1–10. DOI: https://doi.org/10.1155/2016/5121932.

    Article  Google Scholar 

  29. DEHESTANI A, HOSSEINI M, BEYDOKHTI AT. Effect of wetting-drying cycles on mode I and mode II fracture toughness of sandstone in natural (pH=7) and acidic (pH=3) environments [J]. Theoretical and Applied Fracture Mechanics, 2020, 107: 102512. DOI: https://doi.org/10.1016/j.tafmec.2020.102512.

    Article  Google Scholar 

  30. LI Chun, HU Yao-qing. Mode-I fracture toughness and mechanisms of Salt-Rock gypsum interlayers under real-time high-temperature conditions [J]. Engineering Fracture Mechanics, 2020, 240: 107357. DOI: https://doi.org/10.1016/j.engfracmech.2020.107357.

    Article  Google Scholar 

  31. WU Yun, LI Xiao-zhao, HUANG Zhen. Effect of temperature on physical, mechanical and acoustic emission properties of Beishan granite, Gansu Province, China [J]. Natural Hazards, 2021, 107: 1577–1592. DOI: https://doi.org/10.1007/s11069-021-04647-3.

    Article  Google Scholar 

  32. HAN Jie, SUN Qiang, XING H. Experimental study on thermophysical properties of clay after high temperature [J]. Applied Thermal Engineering, 2017, 111: 847–854. DOI: https://doi.org/10.1016/j.applthermaleng.2016.09.168.

    Article  Google Scholar 

  33. MA Dan, ZHANG Ji-xiong, DUAN Hong-yu, et al. Reutilization of gangue wastes in underground backfilling mining: overburden aquifer protection [J]. Chemosphere, 2020, 264: 128400. DOI: https://doi.org/10.1016/j.chemosphere.2020.128400.

    Article  Google Scholar 

  34. HAN Tie-lin, LI Zhi-hui, CHEN Yun-sheng. Sodium sulfate attack-induced deterioration of the mechanical characteristics and its deterioration mechanism of sandstone with Mode-I crack under dry-wet cycles [J]. International Journal of Geomechanics, 2022, 04022103. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0002416.

  35. ALIYU M M, SHANG J, MURPHY W. Assessing the uniaxial compressive strength of extremely hard cryptocrystalline flint [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 310–321. DOI: https://doi.org/10.1016/j.ijrmms.2018.12.002.

    Article  Google Scholar 

  36. ZHANG Wei-qiang, SUN Qiang, HAO Shu-qiang. Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment [J]. Applied Thermal Engineering, 2016, 98: 1297–1304. DOI: https://doi.org/10.1016/j.applthermaleng.2016.01.010.

    Article  Google Scholar 

  37. SOMERTON W H. Thermal properties and temperature related behaviour of rock/fluid systems [J]. Journal of Geochemical Exploration, 1993, 56: 171–172. DOI: https://doi.org/10.1016/0375-6742(93)90022-E.

    Google Scholar 

  38. PENG Kang, ZHANG Jing, ZOU Quan-le, et al. Deformation characteristics of granites at different unloading rates after high-temperature treatment [J]. Environmental Earth Sciences, 2020, 79: 343. DOI: https://doi.org/10.1007/s12665-020-09088-y.

    Article  Google Scholar 

  39. ZHANG Ping, REN Song, ZHAO Yun-feng. Combined effects of sulfate attack under drying-wetting cycles and loading on the fatigue behavior of concrete [J]. Advances in Structural Engineering, 2021, 69: 20–32. DOI: https://doi.org/10.1177/13694332211042774.

    Google Scholar 

  40. ZHANG Ping, TIAN Shi-feng, REN Song. Effects of high temperature and acidic solutions on the pore characteristics and mechanical properties of sandstone [J]. Environmental Science and Pollution Research 2022, 81: 212–224. DOI: https://doi.org/10.1177/136943322110427.

    Google Scholar 

  41. HUANG Zhen, ZENG Wei, WU Yun. Effects of temperature and acid solution on the physical and tensile mechanical properties of red sandstones [J]. Environmental Science and Pollution Research, 2021, 28(3): 1–16. DOI: https://doi.org/10.1007/s11356-020-11866-x.

    Google Scholar 

  42. LI Peng, CAI Mei-feng. Energy evolution mechanism and failure criteria of jointed surrounding rock under uniaxial compression [J]. Journal of Central South University, 2021, 28(6): 1857–1874. DOI: https://doi.org/10.1007/s11771-021-4735-5.

    Article  Google Scholar 

  43. QU Yong-long, YANG Geng-she, XI Jia-mi, et al. Mechanical properties and energy-dissipation mechanism of frozen coarse-grained and medium-grained sandstones [J]. Journal of Central South University, 2023, 30(6): 2018–2034. DOI: https://doi.org/10.1007/s11771-023-5344-2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHANG Ping conducted the literature review and wrote the first draft of the manuscript. WU Fei edited the manuscript. LIU Rong provided financial support. LONG Neng-zeng performed the experiments. REN Song developed the main innovation point of the paper. TIAN Shi-feng edited the manuscript. CHEN Zheng carried out formal analysis. CHEN Jie optimized experimental plan.

Corresponding author

Correspondence to Song Ren  (任松).

Ethics declarations

ZHANG Ping, WU Fei, LIU Rong, LONG Neng-zeng, REN Song, TIAN Shi-feng, CHEN Zheng and CHEN Jie declare that they have no conflict of interest.

Additional information

Foundation item: Project(52074048) supported by the National Natural Science Foundation of China; Project(2011DA105287-MS202122) supported by the State Key Laboratory of Coal Mine Disaster Dynamics and Control, China; Project(CSTB2022NSCQ-MSX0914) supported by the Chongqing Natural Science Foundation, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wu, F., Liu, R. et al. Energy evolution and failure characteristics of sandstone under high temperature and acidic solutions. J. Cent. South Univ. 30, 3162–3172 (2023). https://doi.org/10.1007/s11771-023-5425-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5425-2

Key words

关键词

Navigation