Skip to main content
Log in

Experimental investigation on mechanical behaviors and microstructure responses of the coking coal subjected to freeze-thaw cycles

冻融焦煤力学行为特征及微观结构响应规律试验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this paper, the uniaxial compression test of coking coal with different freeze-thaw (F-T) cycles was carried out, accompanied by the monitoring of the acoustic emission (AE) system and digital image correlation (DIC) system. The results show that with the increase of F-T cycles, there is the continuous increase and obvious development of the sample mass and the pore structure respectively, causing the deterioration of mechanical properties. In addition, the AE activity of the samples gradually increased, which is more obvious in the compaction stage; furtherly, the tensile microcracks in the rock during the compression test always account for a larger proportion (except for 30 F-T cycles). For the failure characteristics, the rock sample changes from splitting tensile failure to shear failure, and the fracture surface morphology changes from rough to smooth. The damage constitutive model of coking coal subjected to the F-T effect and axial load was established, which is in good agreement with the experiment results. Finally, it is found that the initial damage of coking coal subjected to F-T cycles could be attributable to the expansion of pore and fissure space caused by the freeze of free water, the increasingly enhanced water-rock interaction and the interaction between mineral particles.

摘要

为深入研究煤岩在冻融与载荷作用下的力学行为特征和细观结构响应规律,开展了冻融焦煤单 轴压缩试验,试验全程采用声发射和DIC系统监测,采用扫描电镜及显微镜观测了不同冻融次数焦煤 细观结构及断裂面形貌。结果表明,随着冻融次数增加,煤样质量持续增长,孔隙裂隙结构显著发 育,单轴抗压强度及弹性模量逐渐降低。冻融次数增加,压缩煤样声发射活动逐渐增强,且压密阶段 AE事件分布密度及强度显著增加; 煤样压缩全程内部拉伸微裂纹占比较大(除冻融30 次外); 声发射b 呈“V”型变化,揭示冻融焦煤裂纹扩展速度先增后减,加载过程中b 值平稳降低特征逐渐显著,微 裂纹尺度不断增大。冻融次数增加,压缩煤样耗散能占比逐渐增大,弹性能占比对应减少; 冻融0∼20 次煤样多呈劈裂拉伸破坏,冻融30 次后转为剪切破坏,煤样破坏时最大主应变由17.42%降至4.65%, 断面形貌由粗糙逐渐趋于光滑。建立了冻融及单轴载荷作用下冻融焦煤单轴压缩损伤本构模型,所得 理论曲线与试验结果吻合度较高。研究发现,自由水冻结造成孔隙裂隙空间扩展延伸、不断强化的水 岩作用以及矿物颗粒间的相互作用是造成焦煤冻融损伤的主因。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. CAI Cheng-zheng, GAO Feng, LI Gen-sheng, et al. Evaluation of coal damage and cracking characteristics due to liquid nitrogen cooling on the basis of the energy evolution laws [J]. Journal of Natural Gas Science and Engineering, 2016, 29: 30–36. DOI: https://doi.org/10.1016/j.jngse.2015.12.041.

    Article  Google Scholar 

  2. LI Bo-tao, LIN Hai-fei, LI Shu-gang, et al. Exploration of pore structure evolution and damage mechanism of coal under liquid nitrogen freeze-thaw cycles [J]. Fuel, 2022, 325: 124875. DOI: https://doi.org/10.1016/j.fuel.2022.124875.

    Article  Google Scholar 

  3. ZHAI Cheng, WU Shi-liang, LIU Shi-min, et al. Experimental study on coal pore structure deterioration under freeze-thaw cycles [J]. Environmental Earth Sciences, 2017, 76(15): 507. DOI: https://doi.org/10.1007/s12665-017-6829-9.

    Article  Google Scholar 

  4. QIN Lei, ZHAI Cheng, LIU Shi-min, et al. Factors controlling the mechanical properties degradation and permeability of coal subjected to liquid nitrogen freeze-thaw [J]. Scientific Reports, 2017, 7: 3675. DOI: https://doi.org/10.1038/s41598-017-04019-7.

    Article  Google Scholar 

  5. CHU Ya-pei, ZHANG Dong-ming, WANG Man, et al. Experiment study on influence of liquid nitrogen freeze-thaw on pore structure of coal based on nuclear magnetic resonance technology and mercury intrusion methods [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9): 1820–1831. DOI: https://doi.org/10.13722/j.cnki.jrme.2021.1072. (in Chinese)

    Google Scholar 

  6. LIANG Yuan. Key technique of safe mining in low permeability and methane-rich seam group [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1370–1379. DOI: https://doi.org/10.3321/j.issn:1000-6915.2008.07.009. (in Chinese)

    Google Scholar 

  7. QIN Lei, ZHAI Cheng, LIU Shi-min, et al. Infrared thermal image and heat transfer characteristics of coal injected with liquid nitrogen under triaxial loading for coalbed methane recovery [J]. International Journal of Heat and Mass Transfer, 2018, 118: 1231–1242. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.051.

    Article  Google Scholar 

  8. SU Shan-jie, GAO Feng, CAI Cheng-zheng, et al. Experimental study on coal permeability and cracking characteristics under LN2 freeze-thaw cycles [J]. Journal of Natural Gas Science and Engineering, 2020, 83: 103526. DOI: https://doi.org/10.1016/j.jngse.2020.103526.

    Article  Google Scholar 

  9. McDANIEL B W, GRUNDMANN S R, KENDRICK W D, et al. Field applications of cryogenic nitrogen as a hydraulic-fracturing fluid [C]//1997 SPE Annual Technical Conference and Exhibition. San Antonio, Texas: SPE, 1997, 50: 38–39.

    Google Scholar 

  10. QIAO Chen, SONG Zheng-yang, WANG Yu, et al. Fractures and acoustic emission features of non-persistent jointed rocks subjected to freeze-thaw-compression load: Experimental insights [J]. Rock Mechanics and Rock Engineering, 2022, 55(1): 109–123. DOI: https://doi.org/10.1007/s00603-021-02667-w.

    Article  Google Scholar 

  11. SONG Yan-qi, MA Hong-fa, LIU Ji-chen, et al. Experimental investigation on the damage characteristics of freeze-thaw limestone by the uniaxial compression and acoustic emission monitoring tests [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(S1): 2603–2614. DOI: https://doi.org/10.13722/j.cnki.jrme.2021.0307. (in Chinese)

    Google Scholar 

  12. WANG Yu, SONG Zheng-yang, MAO Tian-qiao, et al. Macro-meso fracture and instability behaviors of hollow-cylinder granite containing fissures subjected to freeze-thaw-fatigue loads [J]. Rock Mechanics and Rock Engineering, 2022, 55(7): 4051–4071. DOI: https://doi.org/10.1007/s00603-022-02860-5.

    Article  Google Scholar 

  13. QIAO Chen, LI Chang-hong, WANG Yu, et al. Experimental study on failure of central rock bridge under freeze-thaw cycle [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(06): 1094–1103. DOI: https://doi.org/10.13722/j.cnki.jrme.2019.0982. (in Chinese)

    Google Scholar 

  14. MA Hong-fa, SONG Yan-qi, YANG Jiang-kun, et al. Experimental investigation on physical-mechanical behaviors and macro-micro-structural responses of lignite subjected to freeze-thaw cycles [J]. Natural Resources Research, 2023, 32(2): 543–566. DOI: https://doi.org/10.1007/s11053-022-10151-7.

    Article  Google Scholar 

  15. MOMENI A, ABDILOR Y, KHANLARI G R, et al. The effect of freeze-thaw cycles on physical and mechanical properties of granitoid hard rocks [J]. Bulletin of Engineering Geology and the Environment, 2016, 75(4): 1649–1656. DOI: https://doi.org/10.1007/s10064-015-0787-9.

    Article  Google Scholar 

  16. KHANLARI G, SAHAMIEH R Z, ABDILOR Y. The effect of freeze-thaw cycles on physical and mechanical properties of Upper Red Formation sandstones, central part of Iran [J]. Arabian Journal of Geosciences, 2015, 8(8): 5991–6001. DOI: https://doi.org/10.1007/s12517-014-1653-y.

    Article  Google Scholar 

  17. HUANG Shi-bing, LIU Quan-sheng, CHENG Ai-ping, et al. A fully coupled thermo-hydro-mechanical model including the determination of coupling parameters for freezing rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 205–214. DOI: https://doi.org/10.1016/j.ijrmms.2018.01.029.

    Article  Google Scholar 

  18. ZHOU Jie, TANG Yi-qun. Experimental inference on dual-porosity aggravation of soft clay after freeze-thaw by fractal and probability analysis [J]. Cold Regions Science and Technology, 2018, 153: 181–196. DOI: https://doi.org/10.1016/j.coldregions.2018.06.001.

    Article  Google Scholar 

  19. ABDOLGHANIZADEH K, HOSSEINI M, SAGHAFIYAZDI M. Effect of freezing temperature and number of freeze-thaw cycles on mode I and mode II fracture toughness of sandstone [J]. Theoretical and Applied Fracture Mechanics, 2020, 105: 102428. DOI: https://doi.org/10.1016/j.tafmec.2019.102428.

    Article  Google Scholar 

  20. HUANG Shi-bing, HE Ying-bo, YU Shi-lin, et al. Experimental investigation and prediction model for UCS loss of unsaturated sandstones under freeze-thaw action [J]. International Journal of Mining Science and Technology, 2022, 32(1): 41–49. DOI: https://doi.org/10.1016/j.ijmst.2021.10.012.

    Article  Google Scholar 

  21. LIU Yan-zhang, CAI Yuan-tian, HUANG Shi-bing, et al. Effect of water saturation on uniaxial compressive strength and damage degree of clay-bearing sandstone under freeze-thaw [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(4): 2021–2036. DOI: https://doi.org/10.1007/s10064-019-01686-w.

    Article  Google Scholar 

  22. DEPREZ M, DE KOCK T, DE SCHUTTER G, et al. A review on freeze-thaw action and weathering of rocks [J]. Earth-Science Reviews, 2020, 203: 103143. DOI: https://doi.org/10.1016/j.earscirev.2020.103143.

    Article  Google Scholar 

  23. NIU Cao-yuan, ZHU Zhe-ming, ZHOU Lei, et al. Study on the microscopic damage evolution and dynamic fracture properties of sandstone under freeze-thaw cycles [J]. Cold Regions Science and Technology, 2021, 191: 103328. DOI: https://doi.org/10.1016/j.coldregions.2021.103328.

    Article  Google Scholar 

  24. WANG Y, ZHANG B, LI B, et al. A strain-based fatigue damage model for naturally fractured marble subjected to freeze-thaw and uniaxial cyclic loads [J]. International Journal of Damage Mechanics, 2021, 30(10): 1594–1616. DOI: https://doi.org/10.1177/10567895211021629.

    Article  Google Scholar 

  25. WANG Y, ZHANG B, GAO S H, et al. Investigation on the effect of freeze-thaw on fracture mode classification in marble subjected to multi-level cyclic loads [J]. Theoretical and Applied Fracture Mechanics, 2021, 111: 102847. DOI: https://doi.org/10.1016/j.tafmec.2020.102847.

    Article  Google Scholar 

  26. LI Jie-lin, ZHOU Ke-ping, LIU Wei-jie, et al. NMR research on deterioration characteristics of microscopic structure of sandstones in freeze-thaw cycles [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(11): 2997–3003. DOI: https://doi.org/10.1016/S1003-6326(16)64430-8.

    Article  Google Scholar 

  27. PARK J, HYUN C U, PARK H D. Changes in microstructure and physical properties of rocks caused by artificial freeze-thaw action [J]. Bulletin of Engineering Geology and the Environment, 2015, 74(2): 555–565. DOI: https://doi.org/10.1007/s10064-014-0630-8.

    Article  MathSciNet  Google Scholar 

  28. SEYED MOUSAVI S Z, TAVAKOLI H, MOAREFVAND P, et al. Assessing the effect of freezing-thawing cycles on the results of the triaxial compressive strength test for calc-schist rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104090. DOI: https://doi.org/10.1016/j.ijrmms.2019.104090.

    Article  Google Scholar 

  29. ZHANG Hui-mei, MENG Xiang-zhen, YANG Geng-she. A study on mechanical properties and damage model of rock subjected to freeze-thaw cycles and confining pressure [J]. Cold Regions Science and Technology, 2020, 174: 103056. DOI: https://doi.org/10.1016/j.coldregions.2020.103056.

    Article  Google Scholar 

  30. WALBERT C, ESLAMI J, BEAUCOUR A L, et al. Evolution of the mechanical behaviour of limestone subjected to freeze-thaw cycles [J]. Environmental Earth Sciences, 2015, 74(7): 6339–6351. DOI: https://doi.org/10.1007/s12665-015-4658-2.

    Article  Google Scholar 

  31. HAN Tie-lin, SHI Jun-ping, CAO Xiao-shan. Fracturing and damage to sandstone under coupling effects of chemical corrosion and freeze-thaw cycles [J]. Rock Mechanics and Rock Engineering, 2016, 49(11): 4245–4255. DOI: https://doi.org/10.1007/s00603-016-1028-7.

    Article  Google Scholar 

  32. DENG Hong-wei, YU Song-tao, DENG Jun-ren, et al. Experimental investigation on energy mechanism of freezing-thawing treated sandstone under uniaxial static compression [J]. KSCE Journal of Civil Engineering, 2019, 23(5): 2074–2082. DOI: https://doi.org/10.1007/s12205-019-1278-5.

    Article  Google Scholar 

  33. LU Ya-ni, LI Xin-ping, CHAN A. Damage constitutive model of single flaw sandstone under freeze-thaw and load [J]. Cold Regions Science and Technology, 2019, 159: 20–28. DOI: https://doi.org/10.1016/j.coldregions.2018.11.017.

    Article  Google Scholar 

  34. ZHENG Hong, FENG Xia-ting, CHEN Zu-yu, et al. ISRM suggested method for reporting rock laboratory test data in electronic format [J]. Rock Mechanics and Rock Engineering, 2014, 47(1): 221–254. DOI: https://doi.org/10.1007/s00603-013-0440-5.

    Article  Google Scholar 

  35. NICHOLSON D T, NICHOLSON F H. Physical deterioration of sedimentary rocks subjected to experimental freeze-thaw weathering [J]. Earth Surface Processes and Landforms, 2000, 25(12): 1295–1307. DOI: https://doi.org/10.1002/1096-9837(200011)25: 12<1295: AID-ESP138>3.0.CO;2-E.

    Article  Google Scholar 

  36. MA Hong-fa, CHEN Shao-jie, SONG Yan-qi, et al. Experimental investigation into the effects of composition and microstructure on the tensile properties and failure characteristics of different gypsum rocks [J]. Scientific Reports, 2021, 11: 14517. DOI: https://doi.org/10.1038/s41598-021-93947-6.

    Article  Google Scholar 

  37. MA Qin-yong, MA Dong-dong, YAO Zhao-ming. Influence of freeze-thaw cycles on dynamic compressive strength and energy distribution of soft rock specimen [J]. Cold Regions Science and Technology, 2018, 153: 10–17. DOI: https://doi.org/10.1016/j.coldregions.2018.04.014.

    Article  Google Scholar 

  38. LIU Quan-sheng. Analysis of mechanism of rock failure due to freeze-thaw cycling and mechanical testing study on frozen-thawed rocks [J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3076–3082. DOI: https://doi.org/10.3321/j.issn:1000-6915.2005.17.012. (in Chinese)

    Google Scholar 

  39. MA Hong-fa, SONG Yan-qi, CHEN Shao-jie, et al. Experimental investigation on the mechanical behavior and damage evolution mechanism of water-immersed gypsum rock [J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4929–4948. DOI: https://doi.org/10.1007/s00603-021-02548-2.

    Article  Google Scholar 

  40. DU Kun, LI Xue-feng, TAO Ming, et al. Experimental study on acoustic emission (AE) characteristics and crack classification during rock fracture in several basic lab tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 133: 104411. DOI: https://doi.org/10.1016/j.ijrmms.2020.104411.

    Article  Google Scholar 

  41. LI Xue-long, CHEN Shao-jie, LIU Shu-min, et al. AE waveform characteristics of rock mass under uniaxial loading based on Hilbert-Huang transform [J]. Journal of Central South University, 2021, 28(6): 1843–1856. DOI: https://doi.org/10.1007/s11771-021-4734-6.

    Article  Google Scholar 

  42. LIU Xi-ling, HAN Meng-si, HE Wei, et al. A new b value estimation method in rock acoustic emission testing [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12): e2020JB019658. DOI: https://doi.org/10.1029/2020JB019658.

    Article  Google Scholar 

  43. CHEN Shao-jie, YIN Da-wei, JIANG Ning, et al. Mechanical properties of oil shale-coal composite samples [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123: 104120. DOI: https://doi.org/10.1016/j.ijrmms.2019.104120.

    Article  Google Scholar 

  44. GAN Yi-xiong, WU Shun-chuan, REN Yi, et al. Evaluation indexes of granite splitting failure based on RA and AF of AE parameters [J]. Chinese Journal of Rock and Soil Mechanics, 2020, 41(7): 2324–2332. DOI: https://doi.org/10.16285/j.rsm.2019.1460. (in Chinese)

    Google Scholar 

  45. SOULIOTI D, BARKOULA N M, PAIPETIS A, et al. Acoustic emission behavior of steel fibre reinforced concrete under bending [J]. Construction and Building Materials, 2009, 23(12): 3532–3536. DOI: https://doi.org/10.1016/j.conbuildmat.2009.06.042.

    Article  Google Scholar 

  46. OHNO K, OHTSU M. Crack classification in concrete based on acoustic emission [J]. Construction and Building Materials, 2010, 24(12): 2339–2346. DOI: https://doi.org/10.1016/j.conbuildmat.2010.05.004.

    Article  Google Scholar 

  47. GUTENBERG B, RICHTER C F. Magnitude and energy of earthquakes [J]. Nature, 1955, 176(4486): 795. DOI: https://doi.org/10.1038/176795a0.

    Article  Google Scholar 

  48. FU Bin, ZHOU Zong-hong, WANG Hai-quan, et al. Precursor information study on acoustic emission characteristics of marble under uniaxial cyclic loading-unloading [J]. Journal of China Coal Society, 2016, 41(8): 1946–1953. DOI: https://doi.org/10.13225/j.cnki.jccs.2016.0345. (in Chinese)

    Google Scholar 

  49. CHEN Shao-jie, YIN D, JIANG N, et al. Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer [J]. Geomechanics and Engineering, 2019, 17(4): 333–342. DOI: https://doi.org/10.12989/gae.2019.17.4.333. (in Chinese)

    Google Scholar 

  50. CHEN Shao-jie, DU Zhao-wen, ZHANG Zhen, et al. Effects of chloride on the early mechanical properties and microstructure of gangue-cemented paste backfill [J]. Construction and Building Materials, 2020, 235: 117504. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117504.

    Article  Google Scholar 

  51. ZHOU H W, LIU Z L, ZHONG J C, et al. NMRI online observation of coal fracture and pore structure evolution under confining pressure and axial compressive loads: A novel approach [J]. Energy, 2022, 261: 125297. DOI: https://doi.org/10.1016/j.energy.2022.125297.

    Article  Google Scholar 

  52. XIAO Peng, LI Di-yuan, ZHAO Guo-yan, et al. Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads [J]. Journal of Central South University, 2020, 27(10): 2945–2958. DOI: https://doi.org/10.1007/s11771-020-4520-x.

    Article  Google Scholar 

  53. GAO Ming-zhong, ZHANG Jian-guo, LI Sheng-wei, et al. Calculating changes in fractal dimension of surface cracks to quantify how the dynamic loading rate affects rock failure in deep mining [J]. Journal of Central South University, 2020, 27(10): 3013–3024. DOI: https://doi.org/10.1007/s11771-020-4525-5.

    Article  Google Scholar 

  54. HAIMSON B, CHANG C. A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of Westerly granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(1–2): 285–296. DOI: https://doi.org/10.1016/S1365-1609(99)00106-9.

    Article  Google Scholar 

  55. FAN Zi-dong, XIE He-ping, REN Li, et al. Anisotropy in shear-sliding fracture behavior of layered shale under different normal stress conditions [J]. Journal of Central South University, 2022, 29(11): 3678–3694. DOI: https://doi.org/10.1007/s11771-022-5156-9.

    Article  Google Scholar 

  56. YAN Jin-bao. Experimental research on mechanical properties of deep marble under different initial damage levels and unloading paths [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(8): 1686–1697. DOI: 10.3969/j.issn.1000–6915.2012.08.024. (in Chinese)

    Google Scholar 

  57. BIAN Kang, LIU Jian, ZHANG Wei, et al. Mechanical behavior and damage constitutive model of rock subjected to water-weakening effect and uniaxial loading [J]. Rock Mechanics and Rock Engineering, 2019, 52(1): 97–106. DOI: https://doi.org/10.1007/s00603-018-1580-4.

    Article  Google Scholar 

  58. XIAO Peng, CHEN You-liang, DU Xi, et al. Study on the mechanical properties of sandstone under freeze-thaw cycles and study of Meso-damage constitutive model [J]. Chinese Journal of Geotechnical Engineering, 2023, 45(4): 805–815. DOI: https://doi.org/10.11779/CJGE20220219. (in Chinese)

    Google Scholar 

  59. YIN Duo-hao, XU Qian-jun. Investigating the damage evolution of sandstone using electrical impedance spectroscopy [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104817. DOI: https://doi.org/10.1016/j.ijrmms.2021.104817.

    Article  Google Scholar 

  60. WEIBULL W. A statistical distribution function of wide applicability [J]. Journal of Applied Mechanics, 1951, 18(3): 293–297. DOI: https://doi.org/10.1115/1.4010337.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MA Hong-fa developed the overarching research goals and edited the draft of manuscript. YIN Da-wei conducted the literature review and wrote the manuscript. SONG Yan-qi, ZHENG Jun-jie and SHAO Zhi-xin carried out all the experiments. SHEN Fu-xin and LIU Chuan-peng conducted the theoretical analysis.

Corresponding author

Correspondence to Da-wei Yin  (尹大伟).

Ethics declarations

MA Hong-fa, SONG Yan-qi, ZHENG Jun-jie, SHAO Zhi-xin, SHEN Fu-xin, LIU Chuan-peng and YIN Da-wei declare that they have no conflict of interest.

Additional information

Foundation item: Project(52274128) supported by the National Natural Science Foundation of China; Project supported by the Young Taishan Scholars Project Special Fund, China; Project(2022YFC2904102) supported by the National Key Research and Development Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Hf., Song, Yq., Zheng, Jj. et al. Experimental investigation on mechanical behaviors and microstructure responses of the coking coal subjected to freeze-thaw cycles. J. Cent. South Univ. 30, 2701–2725 (2023). https://doi.org/10.1007/s11771-023-5408-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5408-3

Key words

关键词

Navigation