Skip to main content
Log in

Effect of La2O3 additions on microstructure and mechanical properties of Ti (C,N)-WC-Mo2C-Ni-Co cermets

La2O3添加量对Ti(C,N)-WC-Mo2C-Ni-Co 金属陶瓷组织结构和力学性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Rare earth elements were considered alternative additives beneficial to the TiCN based cermets, but their effect with high content Mo2C has not been thoroughly investigated. In this study, Ti(C, N)-WC-Mo2C-Cr3C2-Ni-Co cermets containing 12 wt.% Mo2C doped with different contents of La2O3 were prepared by vacuum hot-press sintering at 1500 °C. Parametrical analysis on La2O3 addition (0, 0.5 wt.%, 1.0 wt.%, 1.5 wt.%, and 2.0 wt.%) was conducted, in terms of microstructure and mechanical properties of Ti(C, N) based cermets. Experimental results show that when the content of La2O3 increases from 0 to 1.0 wt.%, the ratio of core phase increases while the ratio of brittle rim phase decreases. Nanostructure is formed on the grain boundary of ceramic phase, which effectively inhibits the abnormal growth of rim structures. This can thin the brittle shell, coarsen the core phase, and refine the grains, thus improving its mechanical properties, including hardness and fracture toughness. When the addition amount of La2O3 increases from 1.5 wt.% to 2.0 wt.%, it will aggregate to form larger particles of about 100 nm, which sharply reduces its mechanical properties. The optimal La2O3 addition is 1.0 wt.%, in which Ti(C,N)-based cermets show the optimal comprehensive mechanical properties: the Vickers hardness and fracture toughness are 16.55 GPa and 6.14 MPa·m1/2, respectively. This work provides further knowledge about the effect of rare earth on the core-rim structure and mechanical properties of Ti(C,N)-based cermets with high Mo2C contents.

摘要

稀土元素被认为是可以有效改善TiCN 基金属陶瓷性能的添加剂,但其在高Mo2C含量下的效果尚未得到深入研究。本研究采用真空热压烧结技术,在1500 °C 下制备了不同La2O3含量的Ti(C,N)-WC-Mo2C-Cr3C2-Ni-Co 金属陶瓷,其中Mo2C含量为12 wt.%。对不同La2O3添加量(0.5 wt.%、1.0 wt.%、1.5 wt.%和2.0 wt.%)对Ti(C,N)基陶瓷显微组织和力学性能的影响进行了参数化分析。结果表明,当La2O3含量增加到1.0 wt.%时,芯相的比例增加,脆壳相的比例减少; 在陶瓷相晶界上形成的纳米结构,有效抑制了壳相组织的异常长大,这使得金属陶瓷的脆壳相变薄,硬质相颗粒细化,从而提高了其硬度和断裂韧性等力学性能。当La2O3的添加量从1.5 wt.%增加到2.0 wt.%时,La2O3团聚形成直径约100 nm 的较大颗粒,大幅度降低了金属陶瓷的力学性能。当La2O3添加量为1.0 wt.%时,Ti(C,N)基陶瓷的综合力学性能最佳,其维氏硬度和断裂韧性分别为16.55 GPa 和6.14 MPa·m1/2。本研究有助于进一步揭示稀土氧化物对高Mo2C含量Ti(C,N)基陶瓷芯壳结构和力学性能的影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. XU Qing-zhong, ZHAO Jun, AI Xing. Fabrication and cutting performance of Ti(C, N)-based cermet tools used for machining of high-strength steels [J]. Ceramics International, 2017, 43(8): 6286–6294. DOI: https://doi.org/10.1016/j.ceramint.2017.02.034.

    Article  Google Scholar 

  2. WAN Wei-cai, XIONG Ji, LIANG Meng-xia. Effects of secondary carbides on the microstructure, mechanical properties and erosive wear of Ti(C, N) -based cermets [J]. Ceramics International, 2017, 43(1): 944–952. DOI: https://doi.org/10.1016/j.ceramint.2016.10.024.

    Article  Google Scholar 

  3. LENGAUER W, SCAGNETTO F. Ti(C, N)-based cermets: Critical review of achievements and recent developments [J]. Solid State Phenomena, 2018, 274: 53–100. DOI: https://doi.org/10.4028/www.scientific.net/ssp.274.53.

    Article  Google Scholar 

  4. ZHOU Wei, ZHENG Yong, ZHAO Yi-jie, et al. Study on microstructure and properties of Ti(C, N)-based cermets with dual grain structure [J]. Ceramics International, 2018, 44(12): 14487–14494. DOI: https://doi.org/10.1016/j.ceramint.2018.05.063.

    Article  Google Scholar 

  5. ACCHAR W, GOMES U U, KAYSSER W A, et al. Strength degradation of a tungsten carbide-cobalt composite at elevated temperatures [J]. Materials Characterization, 1999, 43(1): 27–32. DOI: https://doi.org/10.1016/S1044-5803(98)00056-4.

    Article  Google Scholar 

  6. VOITOVICH V B, SVERDEL V V, VOITOVICH R F, et al. Oxidation of WC-Co, WC-Ni and WC-Co-Ni hard metals in the temperature range 500–800 °C [J]. International Journal of Refractory Metals and Hard Materials, 1996, 14(4): 289–295. DOI: https://doi.org/10.1016/0263-4368(96)00009-1.

    Article  Google Scholar 

  7. SHI Xiao-liang, YANG Hua, WANG Sheng, et al. Fabrication and properties of WC-10Co cemented carbide reinforced by multi-walled carbon nanotubes [J]. Materials Science and Engineering A, 2008, 486(1–2): 489–495. DOI: https://doi.org/10.1016/j.msea.2007.10.022.

    Article  Google Scholar 

  8. LIU C, LIN N, HE Y H. Influence of Mo2C and TaC additions on the microstructure and mechanical properties of Ti(C, N)-based cermets [J]. Ceramics International, 2016, 42(2): 3569–3574. DOI: https://doi.org/10.1016/j.ceramint.2015.10.168.

    Article  Google Scholar 

  9. SHANKAR E, PRABU S B. Microstructure and mechanical properties of Ti(C,N) based cermets reinforced with different ceramic particles processed by spark plasma sintering [J]. Ceramics International, 2017, 43(14): 10817–10823. DOI: https://doi.org/10.1016/j.ceramint.2017.05.103.

    Article  Google Scholar 

  10. LIN Nan, ZHAO Long-bo, ZOU Jia-cheng, et al. Improvement in densification process and properties of Ti(C, N) -based cermets with vanadium carbide addition [J]. Ceramics International, 2019, 45(2): 2692–2700. DOI: https://doi.org/10.1016/j.ceramint.2018.10.210.

    Article  Google Scholar 

  11. LI Yan, LIU Ning, ZHANG Xiao-bo, et al. Effect of WC content on the microstructure and mechanical properties of (Ti, W) (C, N) -Co cermets [J]. International Journal of Refractory Metals and Hard Materials, 2008, 26(1): 33–40. DOI: https://doi.org/10.1016/j.ijrmhm.2007.01.003.

    Article  Google Scholar 

  12. AHN S Y, KANG S. Formation of core/rim structures in Ti(C, N) -WC-Ni cermets via a dissolution and precipitation process [J]. Journal of the American Ceramic Society, 2000, 83(6): 1489–1494. DOI: https://doi.org/10.1111/j.1151-2916.2000.tb01415.x.

    Article  Google Scholar 

  13. LI Ping-ping, YE Jin-wen, LIU Ying, et al. Study on the formation of core-rim structure in Ti(CN)-based cermets [J]. International Journal of Refractory Metals and Hard Materials, 2012, 35: 27–31. DOI: https://doi.org/10.1016/j.ijrmhm.2012.03.012.

    Article  Google Scholar 

  14. LINDAHL P, GUSTAFSON P, ROLANDER U, et al. Microstructure of model cermets with high Mo or W content [J]. International Journal of Refractory Metals and Hard Materials, 1999, 17(6): 411–421. DOI: https://doi.org/10.1016/S0263-4368(99)00032-3.

    Article  Google Scholar 

  15. LI Yan, LIU Ning, ZHANG Xiao-bo, et al. Effect of Mo addition on the microstructure and mechanical properties of ultra-fine grade TiC-TiN-WC-Mo2C-Co cermets [J]. International Journal of Refractory Metals and Hard Materials, 2008, 26(3): 190–196. DOI: https://doi.org/10.1016/j.ijrmhm.2007.05.005.

    Article  Google Scholar 

  16. YU Hai-jun, LIU Ying, JIN Yong-zhong, et al. Effect of secondary carbides addition on the microstructure and mechanical properties of (Ti, W, Mo, V)(C, N)-based cermets [J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(5): 586–590. DOI: https://doi.org/10.1016/j.ijrmhm.2011.03.013.

    Article  Google Scholar 

  17. WAN Wei-cai, XIONG Ji, GUO Zhi-xing, et al. Effects of Cr3C2 addition on the erosion-corrosion resistance of Ti(C, N) -based cermets in alkaline conditions [J]. Tribology International, 2013, 64: 178–186. DOI: https://doi.org/10.1016/j.triboint.2013.03.019.

    Article  Google Scholar 

  18. XIONG Hui-wen, WEN Yu, GAN Xue-ping, et al. Influence of coarse TiCN content on the morphology and mechanical properties of ultrafine TiCN-based cermets [J]. Materials Science and Engineering A, 2017, 682: 648–655. DOI: https://doi.org/10.1016/j.msea.2016.11.085.

    Article  Google Scholar 

  19. ZHANG Guo-tao, ZHENG Yong, ZHANG Jia-jie, et al. Effect of VC/Cr3C2 additions on the microstructure, interface structure and mechanical properties of Ti(C, N) -based cermets prepared by in situ carbothermal reduction of nano TiO2 [J]. Ceramics International, 2020, 46(7): 9698–9705. DOI: https://doi.org/10.1016/j.ceramint.2019.12.237.

    Article  MathSciNet  Google Scholar 

  20. PSAKHIE S, OVCHARENKO V, YU Bao-hai, et al. Influence of features of interphase boundaries on mechanical properties and fracture pattern in metal-ceramic composites [J]. Journal of Materials Science & Technology, 2013, 29(11): 1025–1034. DOI: https://doi.org/10.1016/j.jmst.2013.08.002.

    Article  Google Scholar 

  21. ZHU Gang, LIU Ying, YE Jin-wen. Influence of Ce-Co pre-alloyed powder addition on the microstructure and mechanical properties of Ti(C, N) -based cermets [J]. International Journal of Refractory Metals and Hard Materials, 2013, 37: 134–141. DOI: https://doi.org/10.1016/j.ijrmhm.2012.11.008.

    Article  Google Scholar 

  22. MONTEVERDE F, MEDRI V, BELLOSI A. Microstructure of hot-pressed Ti(C, N)-based cermets [J]. Journal of the European Ceramic Society, 2002, 22(14–15): 2587–2593. DOI: https://doi.org/10.1016/S0955-2219(02)00120-6.

    Article  Google Scholar 

  23. LIU Ning, CHAO Sheng, HUANG Xin-ming. Effects of TiC/TiN addition on the microstructure and mechanical properties of ultra-fine grade Ti(C, N) -Ni cermets [J]. Journal of the European Ceramic Society, 2006, 26(16): 3861–3870. DOI: https://doi.org/10.1016/j.jeurceramsoc.2005.12.010.

    Article  Google Scholar 

  24. XU Qing-zhong, AI Xing, ZHAO Jun, et al. Effect of heating rate on the mechanical properties and microstructure of Ti(C, N)-based cermets [J]. Materials Science and Engineering A, 2015, 628: 281–287. DOI: https://doi.org/10.1016/j.msea.2015.01.061.

    Article  Google Scholar 

  25. PÖRNBACHER J, LEITNER H, ANGERER P, et al. TiC-(Ti, M)C core-rim structures in solid-state manufactured steel-based MMCs [J]. Materials Characterization, 2019, 156: 109880. DOI: https://doi.org/10.1016/j.matchar.2019.109880.

    Article  Google Scholar 

  26. BINDER S, LENGAUER W, ETTMAYER P, et al. Phase equilibria in the systems Ti-C-N, Zr-C-N and Hf-C-N [J]. Journal of Alloys and Compounds, 1995, 217(1): 128–136. DOI: https://doi.org/10.1016/0925-8388(94)01314-8.

    Article  Google Scholar 

  27. CHICARDI E, GOTOR F J, MEDRI V, et al. Hot-pressing of (Ti, Mt) (C, N) -Co-Mo2C (Mt=Ta, Nb) powdered cermets synthesized by a mechanically induced self-sustaining reaction [J]. Chemical Engineering Journal, 2016, 292: 51–61. DOI: https://doi.org/10.1016/j.cej.2016.02.007.

    Article  Google Scholar 

  28. ZHAO Xian-rui, YU Ze, ZUO Dun-wen, et al. The effect of various Co contents on the microstructure and properties of Ti(C, N) -TiB2-Co cermets prepared in situ via reactive hot pressing [J]. Advances in Mechanical Engineering, 2020, 12(5): 168781402092571. DOI: https://doi.org/10.1177/1687814020925716.

    Article  Google Scholar 

  29. LEMBOUB S, BOUDEBANE S, GOTOR F J, et al. Corerim structure formation in TiC-Ni based cermets fabricated by a combined thermal explosion/hot-pressing process [J]. International Journal of Refractory Metals and Hard Materials, 2018, 70: 84–92. DOI: https://doi.org/10.1016/j.ijrmhm.2017.09.014.

    Article  Google Scholar 

  30. SEO M, KIM J, KANG S. Effect of carbon content on the microstructure and properties of (Ti0.7W0.3)C-Ni cermet [J]. International Journal of Refractory Metals and Hard Materials, 2011, 29(4): 424–428. DOI: https://doi.org/10.1016/j.ijrmhm.2011.01.004.

    Article  Google Scholar 

  31. ZHANG Li, LIANG Yan, GU Jing-hong, et al. Synthesis of nano (Ti, W)C powder with preferred orientation and twin boundary structure [J]. Advanced Powder Technology, 2022, 33(5): 103550. DOI: https://doi.org/10.1016/j.apt.2022.103550.

    Article  Google Scholar 

  32. SHETTY D K, WRIGHT I G, MINCER P N, et al. Indentation fracture of WC-Co cermets [J]. Journal of Materials Science, 1985, 20(5): 1873–1882. DOI: https://doi.org/10.1007/BF00555296.

    Article  Google Scholar 

  33. JI Kai-xun, MENG Yan-xin, WANG Fu-zeng, et al. Influence of sintering process on microstructure and mechanical properties of Ti(C, N) -based cermet [J]. Materials, 2020, 13(18): 3938. DOI: https://doi.org/10.3390/ma13183938.

    Article  Google Scholar 

  34. KANG Xi-yue, LIN Nan, HE Yue-hui, et al. Improvement of microstructure, mechanical properties and cutting performance of Ti(C, N) -based cermets by ultrafine La2O3 additions [J]. Ceramics International, 2021, 47(14): 19934–19944. DOI: https://doi.org/10.1016/j.ceramint.2021.03.328.

    Article  Google Scholar 

  35. ZHANG Jian-jun, NIE Wu-yang, WEI Xue-long, et al. Microstructure and properties of in situ La2O3 and SiC co-doped WC-10wt% Ni cemented carbides prepared by microwave sintering [J]. Ceramics International, 2020, 46(18): 28013–28024. DOI: https://doi.org/10.1016/j.ceramint.2020.07.296.

    Article  Google Scholar 

  36. SUN Wan-chang, ZHANG Pei, LI Pan, et al. Phase evolution, microstructure and properties of Y2O3-doped TiCN-based cermets [J]. Journal of Rare Earths, 2015, 33(8): 867–873. DOI: https://doi.org/10.1016/S1002-0721(14)60498-1.

    Article  Google Scholar 

  37. HE Lin, GAO Yi-min, LI Ye-fei, et al. Effect of rare earth Y addition on the microstructure and mechanical properties of Ti(C, N)-304SS cermets [J]. Journal of Alloys and Compounds, 2019, 806: 1–10. DOI: https://doi.org/10.1016/j.jallcom.2019.07.271.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

QIU Hao contributed to conceptualization, data curation and investigation, and wrote the original draft of manuscript. LI Xiao-qiang contributed to funding acquisition and supervision, and edited the manuscript. JIANG Chen-yang and PAN Cun-liang edited and reviewed the manuscript supportively. QU Sheng-guan acquired the financial support.

Corresponding author

Correspondence to Xiao-qiang Li  (李小强).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Foundation item: Project(51474108) supported by the National Natural Science Foundation of China; Project(208081725043) supported by the Natural Science Foundation of Guangdong Province, China; Project(1203) supported by the Innovation-driven Development Science and Technology Project of Economic Development District of Yichun, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, H., Li, Xq., Jiang, Cy. et al. Effect of La2O3 additions on microstructure and mechanical properties of Ti (C,N)-WC-Mo2C-Ni-Co cermets. J. Cent. South Univ. 30, 1751–1762 (2023). https://doi.org/10.1007/s11771-023-5362-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5362-0

Key words

关键词

Navigation