Skip to main content
Log in

Variation characteristics of electric resistance in the quiet periods of acoustic emission of sandstone with different saturation

加载路径和饱和度对砂岩电阻和声发射响应特征的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The existence of a quiet period in acoustic emission monitoring brings challenges to early warning of time-dependent rock failure. In order to understand the effect of rock loading paths and water content on acoustic emission (AE) quiet periods and the corresponding electrical resistivity (ER) changes, uniaxial loading, step loading, and incremental cyclic loading-unloading tests were carried out on dry and water-bearing sandstone samples with saturation of 40%, 70% and 100%, respectively. The results show that increasing the water content of sandstone can significantly reduce not only the strength but also the activity of AE signals. With the increase of water content, the quiet periods of AE signals increase, especially in the loading-unloading conditions. Under incremental cyclic loading-unloading conditions, the Felicity effect occurs in water-bearing sandstones. The ER variation is well consistent with stress-induced rock damage and can effectively reflect time-dependent subcritical crack propagation in both dry and water-bearing rocks. ER monitor can be used to compensate for the disadvantages of AE monitor in quiet signal periods.

摘要

岩石破坏过程的声发射监测常存在信号平静期, 给岩石的破坏失稳预警带来极大的困难。为了 研究利用电阻监测声发射平静期内岩石损伤发展的可行性, 本文对干燥和含水饱和度为40%、70%和 100%的砂岩岩样分别开展单轴加载、分级加载和增幅循环加卸载试验, 研究加载路径和饱和度对砂 岩电阻和声发射响应特征的影响。结果表明, 饱和度的增加不仅会显著降低砂岩的强度, 还会削弱声 发射信号的活跃度。随着饱和度的增加, 声发射平静期也逐渐增加, 在加载-卸载条件下尤为明显。此 外, 在含水砂岩的增幅循环加载-卸载试验中声发射出现了Felicity 效应。电阻的变化与岩石内部损伤 发展具有很好的对应关系, 可以有效反映声发射平静期内干燥和含水砂岩内部亚临界裂纹随时间的 发展。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. LIU Li-peng, WANG Xiao-gang, ZHANG Yi-zhong, et al. Tempo-spatial characteristics and influential factors of rockburst: A case study of transportation and drainage tunnels in Jinping II hydropower station [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2011, 3(2): 179–185. DOI: https://doi.org/10.3724/SP.J.1235.2011.00179.

    Article  Google Scholar 

  2. WANG Yu-cheng, TANG Chun’an, TANG Lie-xian, et al. Microseismicity characteristics before and after a rockburst and mechanisms of intermittent rockbursts in a water diversion tunnel [J]. Rock Mechanics and Rock Engineering, 2022, 55(1): 341–361. DOI: https://doi.org/10.1007/s00603-021-02666-x.

    Article  Google Scholar 

  3. FENG Xia-ting, CHEN Bing-rui, LI Shao-jun, et al. Studies on the evolution process of rockbursts in deep tunnels [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2012, 4(4): 289–295. DOI: https://doi.org/10.3724/SP.J.1235.2012.00289.

    Article  MathSciNet  Google Scholar 

  4. MA Xing-dong, LI Chang-you, WANG Xiu-hua, et al. Preliminary study on rockburst development law and rockburst prediction in excavation of layer I of underground powerhouse system in high geostress area of Shuangjiangkou hydropower station [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1): 2964–2972. DOI: https://doi.org/10.13722/j.cnki.jrme.2019.0690. (in Chinese)

    Google Scholar 

  5. XU N W, LI T B, DAI F, et al. Microseismic monitoring of strainburst activities in deep tunnels at the Jinping II hydropower station, China [J]. Rock Mechanics and Rock Engineering, 2016, 49(3): 981–1000. DOI: https://doi.org/10.1007/s00603-015-0784-0.

    Article  Google Scholar 

  6. MA Dan, DUAN Hong-yu, ZHANG Ji-xiong, et al. A state-of-the-art review on rock seepage mechanism of water inrush disaster in coal mines [J]. International Journal of Coal Science & Technology, 2022, 9(1): 50. DOI: https://doi.org/10.1007/s40789-022-00525-w.

    Article  Google Scholar 

  7. HE Man-chao. Latest progress of soft rock mechanics and engineering in China [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2014, 6(3): 165–179. DOI: https://doi.org/10.1016/j.jrmge.2014.04.005.

    Article  Google Scholar 

  8. ZHANG Dong-jie, WANG Jian-duo, GUO Shuai, et al. Research on the underground water inrush mechanism based on the influence of fault [J]. Geotechnical and Geological Engineering, 2022, 40(7): 3531–3550. DOI: https://doi.org/10.1007/s10706-022-02113-w.

    Article  Google Scholar 

  9. WANG Chun-lai, CAO Cong, LI Chang-feng, et al. Experimental investigation on synergetic prediction of granite rockburst using rock failure time and acoustic emission energy [J]. Journal of Central South University, 2022, 29(4): 1262–1273. DOI: https://doi.org/10.1007/s11771-022-4971-3.

    Article  Google Scholar 

  10. WANG Yun-hai, LIU Yong-feng, MA Hai-tao. Changing regularity of rock damage variable and resistivity under loading condition [J]. Safety Science, 2012, 50(4): 718–722. DOI: https://doi.org/10.1016/j.ssci.2011.08.046.

    Article  Google Scholar 

  11. JIA Peng, ZHU Wan-cheng. Dynamic-static coupling analysis on rockburst mechanism in jointed rock mass [J]. Journal of Central South University, 2012, 19(11): 3285–3290. DOI: https://doi.org/10.1007/s11771-012-1405-7.

    Article  Google Scholar 

  12. LIU Jian-po, SI Ying-tao, WEI Deng-cheng, et al. Developments and prospects of microseismic monitoring technology in underground metal mines in China [J]. Journal of Central South University, 2021, 28(10): 3074–3098. DOI: https://doi.org/10.1007/s11771-021-4839-y.

    Article  Google Scholar 

  13. SONG Yi-min, XING Tong-zhen, ZHAO Tong-bin, ZHAO Ze-xin, GAO Ping-bo. Acoustic emission characteristics of deformation field development of rock under uniaxial loading [J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(3): 534–542. DOI: https://doi.org/10.13722/j.cnki.jrme.2016.0973. (in Chinese)

    Google Scholar 

  14. LI Hao-ran, YANG Chun-he, LIU Yu-gang, et al. Experimental research on ultrasonic velocity and acoustic emission properties of granite under failure process [J]. Rock and Soil Mechanics, 2014, 36(10): 1915–1923. DOI: https://doi.org/10.11779/CJGE201410020. (in Chinese)

    Google Scholar 

  15. YIN Xian-gang, LIN Shu-lin, TANG Hai-yan, et al. Study on quiet period and its fractal characteristics of rock failure acoustic emission [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3383–3390. DOI: https://doi.org/10.3321/j.issn:1000-6915.2009.z2.014. (in Chinese)

    Google Scholar 

  16. ZHANG Zheng-hu, LI Ying-chun, HU Li-hua, et al. Predicting rock failure with the critical slowing down theory [J]. Engineering Geology, 2021, 280: 105960. DOI: https://doi.org/10.1016/j.enggeo.2020.105960.

    Article  Google Scholar 

  17. MA Dan, KONG Sai-bo, LI Zhen-hua, et al. Effect of wetting-drying cycle on hydraulic and mechanical properties of cemented paste backfill of the recycled solid wastes [J]. Chemosphere, 2021, 282: 131163. DOI: https://doi.org/10.1016/j.chemosphere.2021.131163.

    Article  Google Scholar 

  18. LIU Xiang-xin, LIANG Zheng-zhao, ZHANG Yan-bo, et al. Experimental study on the monitoring of rockburst in tunnels under dry and saturated conditions using AE and infrared monitoring [J]. Tunnelling and Underground Space Technology, 2018, 82: 517–528. DOI: https://doi.org/10.1016/j.tust.2018.08.011.

    Article  Google Scholar 

  19. ZHAO Kui, WANG Xing, WANG Li, et al. Investigation of the crack and acoustic emission behavior evolution of red sandstone subjected to water [J]. Theoretical and Applied Fracture Mechanics, 2022, 120: 103419. DOI: https://doi.org/10.1016/j.tafmec.2022.103419.

    Article  Google Scholar 

  20. ZHU Jun, DENG Jian-hui, CHEN Fei, et al. Failure analysis of water-bearing rock under direct tension using acoustic emission [J]. Engineering Geology, 2022, 299: 106541. DOI: https://doi.org/10.1016/j.enggeo.2022.106541.

    Article  Google Scholar 

  21. WANG Wei-nan, YAO Qiang-ling, TANG Chuan-jin, et al. Mechanical properties damage, fracture evolution, and constitutive model of siltstone under the effect of moisture content [J]. Geofluids, 2022, 2022: 1–18. DOI: https://doi.org/10.1155/2022/8599808.

    Article  Google Scholar 

  22. JIA Peng, LI Bo, ZHU Peng-cheng, et al. Electrical response characteristics of high temperature damaged sandstones under uniaxial compression [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 558–564. (in Chinese)

    Google Scholar 

  23. BAI Guo-gang, SUN Qiang, GENG Ji-shi, et al. Resistivity of granite and sandstone varies with frequency and water saturation [J]. Geomechanics and Geophysics for Geo-energy and Geo-resources, 2022, 8(6): 198.

    Article  Google Scholar 

  24. NAOI M, OGASAWARA H, TAKEUCHI J, et al. Small slow-strain steps and their forerunners observed in gold mine in South Africa [J]. Geophysical Research Letters, 2006, 33(12): L12304. DOI: https://doi.org/10.1029/2006GL026507.

    Article  Google Scholar 

  25. HUANG Yao-ying, SHAO J F. A micromechanical model for time dependent behavior related to subcritical damage in quasi brittle rocks [C]//YANG Q, ZHANG J M, ZHENG H, et al. Constitutive Modeling of Geomaterials. Berlin, Heidelberg: Springer, 2013: 323–326. DOI: https://doi.org/10.1007/978-3-642-32814-5_44.

    Chapter  Google Scholar 

  26. PARKHOMENKO E I, BONDARENKO A T. Effect of uniaxial pressure on electrical resistivity of rocks [J]. Bulletin of the Academy of Sciences of the USSR, 1960(2): 326.

  27. YAMAZAKI Y. Electrical conductivity of strained rocks. The first paper. Laboratory experiments on sedimentary rocks [J]. Bulletin of the Earthquake Research Institute, 1965(43): 783–802.

  28. BRACE W F. Electrical resistivity changes in saturated rock under stress [J]. Science, 1966, 153(3743): 1525–1526. DOI: https://doi.org/10.1126/science.153.3743.1525.

    Article  Google Scholar 

  29. STOPINSKI W, TEISSEYRE R. Precursory rock resistivity variations related to mining tremors [J]. Acta Geophysica, 1982, 30(4): 293–320. https://www.researchgate.net/publication/292878216.

    Google Scholar 

  30. LI De-chun, GE Bao-tang, SHU Ji-sen. Resistivity change test during rock failure [J]. Journal of China University of Mining & Technology, 1999, 28(5): 394–400. DOI: https://doi.org/10.3321/j.issn:1000-1964.1999.05.020. (in Chinese)

    Google Scholar 

  31. CHEN Geng-ye, LIN Yun-mei. Stress-strain-electrical resistance effects and associated state equations for uniaxial rock compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 223–236. DOI: https://doi.org/10.1016/S1365-1609(03)00092-3.

    Article  Google Scholar 

  32. WANG Kui, XIA Zheng-ting, HUANG Zhen, et al. Damage evolution of sandstone under constant-amplitude cyclic loading based on acoustic emission parameters and resistivity [J]. Advances in Materials Science and Engineering, 2021, 2021: 1–10. DOI: https://doi.org/10.1155/2021/7057183.

    Google Scholar 

  33. GOMAA M M. Modeling kaolinite electrical features under pressure using Pseudo Random Renormalization Group method at the audio frequency range [J]. Journal of Physics and Chemistry of Solids, 2021, 152: 109963. DOI: https://doi.org/10.1016/j.jpcs.2021.109963.

    Article  Google Scholar 

  34. KAHRAMAN S, ALBER M. Predicting the physicomechanical properties of rocks from electrical impedance spectroscopy measurements [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(4): 543–553. DOI: https://doi.org/10.1016/j.ijrmms.2005.09.013.

    Article  Google Scholar 

  35. JIA Peng, LI Lei, LIU Dong-qiao, et al. Insight into rock crack propagation from resistivity and ultrasonic wave variation [J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102758. DOI: https://doi.org/10.1016/j.tafmec.2020.102758.

    Article  Google Scholar 

  36. LI Jie, WANG Ming-yang, XIA Kai-wen, et al. Time-dependent dilatancy for brittle rocks [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(6): 1054–1070. DOI: https://doi.org/10.1016/j.jrmge.2017.08.002.

    Article  Google Scholar 

  37. SONDERGELD C H, ESTEY L H. Acoustic emission study of microfracturing during the cyclic loading of westerly granite [J]. Journal of Geophysical Research: Solid Earth, 1981, 86(B4): 2915–2924. DOI: https://doi.org/10.1029/JB086iB04p02915.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JIA Peng provided the concept and modified the manuscript. WANG Qi-wei did the experiment and wrote the first draft of the manuscript. QIAN Yi-jin and WANG Yin participated in the experiment.

Corresponding author

Correspondence to Peng Jia  (贾蓬).

Additional information

Conflict of interest

JIA Peng, WANG Qi-wei, QIAN Yi-jin and WANG Yin declare that they have no conflict of interest.

Foundation item: Project(52174071) supported by the National Natural Science Foundation of China; Project(2022YFC2903903) supported by the National Key R&D Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, P., Wang, Qw., Qian, Yj. et al. Variation characteristics of electric resistance in the quiet periods of acoustic emission of sandstone with different saturation. J. Cent. South Univ. 30, 1993–2003 (2023). https://doi.org/10.1007/s11771-023-5359-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5359-8

Key words

关键词

Navigation