Skip to main content
Log in

Electrical properties of PVDF films fabricated by direct ink writing

直写成型制备PVDF薄膜的电学性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this study, direct ink writing (DIW) was applied to preparing polyvinylidene fluoride (PVDF) film. The rheological properties of inks were studied, and the influence of process parameters on material properties was systematically investigated by SEM, FTIR, DSC, dielectric, ferroelectric and piezoelectric properties testing. The results show that effective β-phase content of PVDF film prepared by printing parameters with printing needle size of 27G and printing speed of 20 mm/s was 52.38%, which was improved by 51.47% compared with the film prepared by solution casting. The high β-phase content improved the electrical properties of film. This is attributed to the orientation of PVDF molecular chains by the drawing force generated at printing needle and the shear force generated during extrusion. The piezoelectric output voltage increases approximately linearly with increasing finger height from the sensor. The sensitivity of the sensor is 78 mV/N, which is comparable to the performance of one prepared by solution casting and treated with electric polarization. The excellent piezoelectric performance of PVDF film demonstrates application potential in small deformation monitoring.

摘要

本文采用直写成型(DIW)制备聚偏二氟乙烯(PVDF)薄膜。研究了打印墨水的流变性能, 并通过SEM、FTIR、DSC、介电性能、铁电性能和压电性能测试, 系统研究了工艺参数对材料性能的影响。结果表明, 采用打印针头规格为27G, 打印速度为20 mm/s 的打印参数制备的薄膜, 其有效β相含量为52.38%, 相比于溶液流延法制备的薄膜提升了51.47%, 高β相含量改善了薄膜的电学性能。这主要归因于打印针头处产生的牵伸力以及挤出时产生的剪切力对PVDF 分子链的定向作用。在手指敲击测试中, 随手指距离传感器高度的增加, 响应的压电输出电压近似线性增加, 制备的传感器具有78 mV/N的灵敏度, 这与采用传统溶液铸造并电极化处理的薄膜性能相当。说明本实验制备的无极化传感器, 在微小形变监测中具有应用潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. YUAN Xiao-ting, YAN Ao, LAI Zi-wei, et al. A poling-free PVDF nanocomposite via mechanically directional stress field for self-powered pressure sensor application [J]. Nano Energy, 2022, 98: 107340. DOI: https://doi.org/10.1016/j.nanoen.2022.107340.

    Article  Google Scholar 

  2. LI Jing, ZHOU Guo-yun, HONG Yan, et al. Highly sensitive, flexible and wearable piezoelectric motion sensor based on PT promoted β-phase PVDF [J]. Sensors and Actuators A: Physical, 2022, 337: 113415. DOI: https://doi.org/10.1016/j.sna.2022.113415.

    Article  Google Scholar 

  3. YANG Ye. Research on preparation and properties of PVDF based flexible pressure sensors [D]. Chengdu: School of Optoelectronic Science and Engineering, 2020. (in Chinese)

    Google Scholar 

  4. BURNHAM-FAY E D, LE T E, TARBUTTON J A, et al. Strain characteristics of additive manufactured polyvinylidene fluoride (PVDF) actuators [J]. Sensors and Actuators A: Physical, 2017, 266: 85–92. DOI: https://doi.org/10.1016/j.sna.2017.08.053.

    Article  Google Scholar 

  5. LEE C, TARBUTTON J A. Polyvinylidene fluoride (PVDF) direct printing for sensors and actuators [J]. The International Journal of Advanced Manufacturing Technology, 2019, 104(5): 3155–3162. DOI: https://doi.org/10.1007/s00170-019-04275-z.

    Article  Google Scholar 

  6. MEJRI R, DIAS J C, HENTATI S B, et al. Effect of anion type in the performance of ionic liquid/poly(vinylidene fluoride) electromechanical actuators [J]. Journal of Non-crystalline Solids, 2016, 453: 8–15. DOI: https://doi.org/10.1016/j.jnoncrysol.2016.09.014.

    Article  Google Scholar 

  7. ZHAO Yang-zhou, YU Wei-feng. Piezoelectric properties of nano-SiO2/poly(vinylidene fluoride) composite film [J]. Journal of Materials Science & Engineering, 2019, 37(4): 599–603, 618. DOI: https://doi.org/10.14136/j.cnki.issn1673-2812.2019.04.015. (in Chinese)

    Google Scholar 

  8. GUO Ru, LUO Hang, ZHOU Xue-fan, et al. Ultrahigh energy density of poly(vinylidene fluoride) from synergistically improved dielectric constant and withstand voltage by tuning the crystallization behavior [J]. Journal of Materials Chemistry A, 2021, 9(48): 27660–27671. DOI: https://doi.org/10.1039/D1TA07680A.

    Article  Google Scholar 

  9. SONG Li, DAI Rui-xian, LI Yi-jun, et al. Polyvinylidene fluoride energy harvester with boosting piezoelectric performance through 3D printed biomimetic bone structures [J]. ACS Sustainable Chemistry & Engineering, 2021, 9(22): 7561–7568. DOI: https://doi.org/10.1021/acssuschemeng.1c01305.

    Article  Google Scholar 

  10. PEI Hao-ran, XIE Ye-ping, XIONG Yu, et al. A novel polarization-free 3D printing strategy for fabrication of poly (vinylidene fluoride) based nanocomposite piezoelectric energy harvester [J]. Composites Part B: Engineering, 2021, 225: 109312. DOI: https://doi.org/10.1016/j.compositesb.2021.109312.

    Article  Google Scholar 

  11. CHEN Yu-qing, ZHOU Jun, WU Kai, et al. Research progress in polyvinylidene fluoride (PVDF) Polycrystalline Characteristics [J]. Insulation material, 2022, 55(4): 1–12. DOI: https://doi.org/10.16790/j.cnki.1009-9239.im.2022.04.001. (in Chinese)

    Google Scholar 

  12. RUAN Liu-xia, YAO Xian-nian, CHANG Yu-fang, et al. Properties and applications of the β-phase poly(vinylidene fluoride) [J]. Polymers, 2018, 10(3): 228. DOI: https://doi.org/10.3390/polym10030228.

    Article  Google Scholar 

  13. RAJEEVAN S, JOHN S, GEORGE S C. Polyvinylidene fluoride: A multifunctional polymer in supercapacitor applications [J]. Journal of Power Sources, 2021, 504: 230037. DOI: https://doi.org/10.1016/j.jpowsour.2021.230037.

    Article  Google Scholar 

  14. LIU Ren-jun, LIU Qing, HE Dan, et al. Enhancement of the piezoelectric property of polyvinylidene fluoride through electroactive phase enrichment and the application in piezoelectric generators [J]. ACS Applied Electronic Materials, 2021, 3(4): 1804–1812. DOI: https://doi.org/10.1021/acsaelm.1c00074.

    Article  MathSciNet  Google Scholar 

  15. LU Hong-chao, LI Li. Crystalline structure, dielectric, and mechanical properties of simultaneously biaxially stretched polyvinylidene fluoride film [J]. Polymers for Advanced Technologies, 2018, 29(12): 3056–3064. DOI: https://doi.org/10.1002/pat.4426.

    Article  MathSciNet  Google Scholar 

  16. KIM H, TORRES F, WU Yan-yu, et al. Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application [J]. Smart Materials and Structures, 2017, 26(8): 085027. DOI: https://doi.org/10.1088/1361-665x/aa738e.

    Article  Google Scholar 

  17. YANG Lu, ZHAO Qiu-ying, SHEN Ming-xia, QIU Jin-hao. The fabrication and piezoelectric performance of MnO2 fiber/PVDF composites films [J]. Materials Reports, 2020, 34(24): 24145–24149. (in Chinese)

    Google Scholar 

  18. ONGUN M Z, PARALı L, OĞUZLAR S, et al. Characterization of β-PVDF-based nanogenerators along with Fe2O3 NPs for piezoelectric energy harvesting [J]. Journal of Materials Science: Materials in Electronics, 2020, 31(21): 19146–19158. DOI: https://doi.org/10.1007/s10854-020-04451-y.

    Google Scholar 

  19. WANG Shi-wen, ZHANG Lu, WANG Li-li, et al. Fluorinated Barium titanate nanoparticles for wearable piezoelectric power generation [J]. ACS Applied Nano Materials, 2022, 5(3): 3352–3360. DOI: https://doi.org/10.1021/acsanm.1c03777.

    Article  MathSciNet  Google Scholar 

  20. LI Xiao-xia, JI Dong-xiao, YU Bing-xue, et al. Boosting piezoelectric and triboelectric effects of PVDF nanofiber through carbon-coated piezoelectric nanoparticles for highly sensitive wearable sensors [J]. Chemical Engineering Journal, 2021, 426: 130345. DOI: https://doi.org/10.1016/j.cej.2021.130345.

    Article  Google Scholar 

  21. CAI Jia-wei, ZHANG Bai-cheng, ZHANG Mao-hang, et al. Indirect 3D printed ceramic: A literature review [J]. Journal of Central South University, 2021, 28(4): 983–1002. DOI: https://doi.org/10.1007/s11771-021-4674-1.

    Article  Google Scholar 

  22. ZHAO Li, JIANG Zhao-liang, ZHANG Cheng, et al. Development model and experimental characterization of residual stress of 3D printing PLA parts with porous structure [J]. Applied Physics A, 2021, 127(2): 98. DOI: https://doi.org/10.1007/s00339-020-04238-2.

    Article  Google Scholar 

  23. LI Hai, SONG H, LONG Meng-jie, et al. Mortise-tenon joint structured hydrophobic surface-functionalized Barium titanate/polyvinylidene fluoride nanocomposites for printed self-powered wearable sensors [J]. Nanoscale, 2021, 13(4): 2542–2555. DOI: https://doi.org/10.1039/d0nr07525f.

    Article  Google Scholar 

  24. SHEPELIN N A, SHERRELL P C, GOUDELI E, et al. Printed recyclable and self-poled polymer piezoelectric generators through single-walled carbon nanotube templating [J]. Energy & Environmental Science, 2020, 13(3): 868–883. DOI: https://doi.org/10.1039/C9EE03059J.

    Article  Google Scholar 

  25. TU Ruo-wen, SPRAGUE E, SODANO H A. Precipitation-printed high-β-phase poly(vinylidene fluoride) for energy harvesting [J]. ACS Applied Materials & Interfaces, 2020, 12(52): 58072–58081. DOI: https://doi.org/10.1021/acsami.0c16207.

    Article  Google Scholar 

  26. BODKHE S, TURCOT G, GOSSELIN F P, et al. One-step solvent evaporation-assisted 3D printing of piezoelectric PVDF nanocomposite structures [J]. ACS Applied Materials & Interfaces, 2017, 9(24): 20833–20842. DOI: https://doi.org/10.1021/acsami.7b04095.

    Article  Google Scholar 

  27. LIU Xin-gang, SHANG Ying-hao, ZHANG Ji-hai, et al. Ionic liquid-assisted 3D printing of self-polarized β-PVDF for flexible piezoelectric energy harvesting [J]. ACS Applied Materials & Interfaces, 2021, 13(12): 14334–14341. DOI: https://doi.org/10.1021/acsami.1c03226.

    Article  Google Scholar 

  28. PEI Hao-ran, SHI Shao-hong, CHEN Ying-hong, et al. Combining solid-state shear milling and FFF 3D-printing strategy to fabricate high-performance biomimetic wearable fish-scale PVDF-based piezoelectric energy harvesters [J]. ACS Applied Materials & Interfaces, 2022, 14(13): 15346–15359. DOI: https://doi.org/10.1021/acsami.2c02491.

    Article  Google Scholar 

  29. ZHU Yuan. Fabrication of PVDF piezoelectric thin film by the electric poling assisted 3D printing technology [D]. Zhenjiang: Jiangsu University, 2018. (in Chinese)

    Google Scholar 

  30. WANG An-dong, CHEN Cai-feng, QIAN Ji-long, et al. Enhanced electrical properties of PVDF thin film by addition of NaCl by near-electric-field 3D printing [J]. Journal of Electronic Materials, 2021, 50(8): 4781–4786. DOI: https://doi.org/10.1007/s11664-021-09014-3.

    Article  Google Scholar 

  31. CHEN Cai-feng, CAI Fei-xiang, ZHU Yuan, et al. 3D printing of electroactive PVDF thin films with high β-phase content [J]. Smart Materials and Structures, 2019, 28(6): 065017. DOI: https://doi.org/10.1088/1361-665x/ab15b7.

    Article  Google Scholar 

  32. LOW Y K A, TAN Li yi, TAN L P, et al. Increasing solvent polarity and addition of salts promote β-phase poly (vinylidene fluoride) formation [J]. Journal of Applied Polymer Science, 2013, 128(5): 2902–2910. DOI: https://doi.org/10.1002/app.38451.

    Article  Google Scholar 

  33. QIAN Ji-long. Research on near-electric field 3D printing preparation of PVDF composite piezoelectric film and sensor [D]. Zhenjiang: Jiangsu University, 2020. DOI: https://doi.org/10.27170/d.cnki.gjsuu.2020.001799. (in Chinese)

    Google Scholar 

  34. YANG Gui-yan, SUN You-yi, LI Meng-ru, et al. Direct-ink-writing (DIW) 3D printing functional composite materials based on supra-molecular interaction [J]. Composites Science and Technology, 2021, 215: 109013. DOI: https://doi.org/10.1016/j.compscitech.2021.109013.

    Article  Google Scholar 

  35. LIAO Lin-chen, CHEN Cai-feng, QIAN Ji-long, et al. Direct writing of PVDF piezoelectric film based on near electric field added by [Emim]BF4 [J]. Materials Research Express, 2020, 7(1): 016437. DOI: https://doi.org/10.1088/2053-1591/ab6c13.

    Article  Google Scholar 

  36. CAI Xiao-mei, LEI Ting-ping, SUN Dao-heng, et al. A critical analysis of the α, β and γ phases in poly(vinylidene fluoride) using FTIR [J]. RSC Advances, 2017, 7(25): 15382–15389. DOI: https://doi.org/10.1039/C7RA01267E.

    Article  Google Scholar 

  37. PARANGUSAN H, PONNAMMA D, AL ALI ALMAADEED M. Investigation on the effect of γ-irradiation on the dielectric and piezoelectric properties of stretchable PVDF/Fe-ZnO nanocomposites for self-powering devices [J]. Soft Matter, 2018, 14(43): 8803–8813. DOI: https://doi.org/10.1039/C8SM01655K.

    Article  Google Scholar 

  38. MARTINS P, LOPES A C, LANCEROS-MENDEZ S. Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications [J]. Progress in Polymer Science, 2014, 39(4): 683–706. DOI: https://doi.org/10.1016/j.progpolymsci.2013.07.006.

    Article  Google Scholar 

  39. LUISO S, HENRY J J, POURDEYHIMI B, et al. Fabrication and characterization of meltblown poly(vinylidene difluoride) membranes [J]. ACS Applied Polymer Materials, 2020, 2(7): 2849–2857. DOI: https://doi.org/10.1021/acsapm.0c00395.

    Article  Google Scholar 

  40. LEE C, TARBUTTON J A. Electric poling-assisted additive manufacturing process for lead-free piezoelectric device fabrication [J]. Procedia Manufacturing, 2015, 1: 320–326. DOI: https://doi.org/10.1016/j.promfg.2015.09.035.

    Article  Google Scholar 

  41. SENCADAS V, GREGORIO R, LANCEROS-MÉNDEZ S. α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch [J]. Journal of Macromolecular Science, Part B, 2009, 48(3): 514–525. DOI: https://doi.org/10.1080/00222340902837527.

    Article  Google Scholar 

  42. YANG Lu, QIU Jin-hao, JI Hong-li, et al. Enhanced dielectric and ferroelectric properties induced by TiO2@MWCNTs nanoparticles in flexible poly(vinylidene fluoride) composites [J]. Composites Part A: Applied Science and Manufacturing, 2014, 65: 125–134. DOI: https://doi.org/10.1016/j.compositesa.2014.06.006.

    Article  Google Scholar 

  43. Prateek, BHUNIA R, SIDDIQUI S, et al. Significantly enhanced energy density by tailoring the interface in hierarchically structured TiO2-BaTiO3-TiO2 nanofillers in PVDF-based thin-film polymer nanocomposites [J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14329–14339. DOI: https://doi.org/10.1021/acsami.9b01359.

    Article  Google Scholar 

  44. RUI Guan-chun, HUANG Yan-fei, CHEN Xin-yue, et al. Giant spontaneous polarization for enhanced ferroelectric properties of biaxially oriented poly(vinylidene fluoride) by mobile oriented amorphous fractions [J]. Journal of Materials Chemistry C, 2021, 9(3): 894–907. DOI: https://doi.org/10.1039/D0TC04632A.

    Article  Google Scholar 

  45. MENG Nan, REN Xin-tong, ZHU Xiao-jing, et al. Multiscale understanding of electric polarization in poly (vinylidene fluoride) -based ferroelectric polymers [J]. Journal of Materials Chemistry C, 2020, 8(46): 16436–16442. DOI: https://doi.org/10.1039/D0TC04310A.

    Article  Google Scholar 

  46. YE Yun, JIANG Ya-dong, WU Zhi-ming, et al. Phase transitions of poly(vinylidene fluoride) under electric fields [J]. Integrated Ferroelectrics, 2006, 80(1): 245–251. DOI: https://doi.org/10.1080/10584580600659423.

    Article  Google Scholar 

  47. YUAN Xiao-ting, GAO Xiang-yu, SHEN Xin-yi, et al. A 3D-printed, alternatively tilt-polarized PVDF-TrFE polymer with enhanced piezoelectric effect for self-powered sensor application [J]. Nano Energy, 2021, 85: 105985. DOI: https://doi.org/10.1016/j.nanoen.2021.105985.

    Article  Google Scholar 

  48. BODKHE S, ERMANNI P. Challenges in 3D printing of piezoelectric materials [J]. Multifunctional Materials, 2019, 2(2): 022001. DOI: https://doi.org/10.1088/2399-7532/ab0c41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHANG Dou and WANG Xiao-feng conceived and supervised the project. YANG Hong carried out the experimental planning, material preparations and data analysis. ZHAO Lian-zhong helped in the electrical measurements. ZHANG Yan and LUO Hang helped in the material characterizations. WANG Ri-chu provided constructive suggestions. All authors contributed to the discussion and preparation of the manuscript.

Corresponding authors

Correspondence to Dou Zhang  (张斗) or Xiao-feng Wang  (王小锋).

Additional information

Conflict of interest

YANG Hong, ZHAO Lian-zhong, ZHANG Yan, LUO Hang, WANG Ri-chu, ZHANG Dou and WANG Xiao-feng declare that they have no conflict of interest.

Foundation item: Project(2020JJ4729) supported by the Natural Science Foundation of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhao, Lz., Zhang, Y. et al. Electrical properties of PVDF films fabricated by direct ink writing. J. Cent. South Univ. 30, 1477–1489 (2023). https://doi.org/10.1007/s11771-023-5340-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5340-6

Key words

关键词

Navigation