Skip to main content
Log in

Oxygen removal and subsequent morphology transformation of TiOx<1 powders in electrodeoxidation process

TiOx<1粉体在电脱氧过程中的氧移除和持续性形貌转变

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this study, TiOx<1 powders obtained from the combustion synthesis of TiO2 and Mg was used as cathode to prepare low-oxygen titanium powders by electrochemical deoxidation process. The mechanism of oxygen removal, composition and morphology change of TiOx<1 powders during electrode oxidation were investigated. The residual oxygen content in electrodeoxidized TiOx<1 powders is linearly related to the deoxidation time. An obvious sintering neck between titanium particles with less than 0.35wt% oxygen could be observed after electrodeoxidation for 2 h. The removal of oxygen from Ti lattice promotes the surface diffusion of titanium atoms and leads to subsequent sintering and growth of TiOx<1 powders in electrodeoxidation. The morphology of TiOx<1 powders was transformed into coral and porous flakes from agglomerated small particles with a decrease in residual oxygen content and an extension of deoxidation time.

摘要

在本研究中, 将二氧化钛和镁粉以自蔓延燃烧合成制备的TiOx<1粉末用作阴极, 通过电化学脱氧工艺制备低氧钛粉。利用电化学分析、XRD、SEM、XPS、TEM 等测试表征手段研究了电化学脱氧过程中TiOx<1粉末的脱氧过程、成分和形貌转变。结果表明: TiOx<1粉末电脱氧后的残余氧含量与还原时间呈线性关系。电脱氧2 h 后, 在氧含量低于0.35wt%的钛颗粒之间可观察到明显的烧结颈。钛晶格中的氧移除促进了钛原子的表面扩散, 从而导致TiOx<1粉末在电脱氧过程中的烧结和持续性长大。随着残余氧含量的降低和脱氧时间的延长, TiOx<1粉末形貌从团聚的小颗粒状转变为珊瑚状和多孔片状。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. TAKEDA O, OUCHI T, OKABE T H. Recent progress in titanium extraction and recycling [J]. Metallurgical and Materials Transactions B, 2020, 51(4): 1315–1328. DOI: https://doi.org/10.1007/s11663-020-01898-6.

    Article  Google Scholar 

  2. REDDY R G, SHINDE P S, LIU Ai-min. Review—The emerging technologies for producing low-cost titanium [J]. Journal of the Electrochemical Society, 2021, 168(4): 042502. DOI: https://doi.org/10.1149/1945-7111/abe50d.

    Article  Google Scholar 

  3. QIU Guan-zhou, GUO Yu-feng. Current situation and development trend of titanium metal industry in China [J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(4): 599–610. DOI: https://doi.org/10.1007/s12613-022-2455-y.

    Article  MathSciNet  Google Scholar 

  4. FANG Z Z, PARAMORE J D, SUN Pei, et al. Powder metallurgy of titanium—Past, present, and future [J]. International Materials Reviews, 2018, 63(7): 407–459. DOI: https://doi.org/10.1080/09506608.2017.1366003.

    Article  Google Scholar 

  5. TAKEDA O, OKABE T H. Current status of titanium recycling and related technologies [J]. JOM, 2019, 71(6): 1981–1990. DOI: https://doi.org/10.1007/s11837-018-3278-1.

    Article  Google Scholar 

  6. DRING K, DASHWOOD R, INMAN D. Voltammetry of titanium dioxide in molten calcium chloride at 900 °C [J]. Journal of the Electrochemical Society, 2005, 152(3): E104. DOI: https://doi.org/10.1149/1.1860515.

    Article  Google Scholar 

  7. ZHANG Ying, LU Wei-liang, SUN Pei, et al. Deoxygenation of Ti metal: A review of processes in literature [J]. International Journal of Refractory Metals and Hard Materials, 2020, 91: 105270. DOI: https://doi.org/10.1016/j.ijrmhm.2020.105270.

    Article  Google Scholar 

  8. TSUKIHASHI F, HATTA T, TAWARA E. Thermodynamics of calcium and oxygen in molten titanium and titanium-aluminum alloy [J]. Metallurgical and Materials Transactions B, 1996, 27(6): 967–972. DOI: https://doi.org/10.1007/s11663-996-0010-2.

    Article  Google Scholar 

  9. OKABE T H, ODA T, MITSUDA Y. Titanium powder production by preform reduction process (PRP) [J]. Journal of Alloys and Compounds, 2004, 364(1–2): 156–163. DOI: https://doi.org/10.1016/S0925-8388(03)00610-8.

    Article  Google Scholar 

  10. PARK I, ABIKO T, OKABE T H. Production of titanium powder directly from TiO2 in CaCl2 through an electronically mediated reaction (EMR) [J]. Journal of Physics and Chemistry of Solids, 2005, 66(2–4): 410–413. DOI: https://doi.org/10.1016/j.jpcs.2004.06.052.

    Article  Google Scholar 

  11. SUZUKI R O, AIZAWA M, ONO K. Calcium-deoxidation of niobium and titanium in Ca-saturated CaCl2 molten salt [J]. Journal of Alloys and Compounds, 1999, 288(1–2): 173–182. DOI: https://doi.org/10.1016/S0925-8388(99)00116-4.

    Article  Google Scholar 

  12. ZHANG Ying, FANG Z Z, SUN Pei, et al. Thermodynamic destabilization of Ti-O solid solution by H2 and deoxygenation of Ti using Mg [J]. Journal of the American Chemical Society, 2016, 138(22): 6916–6919. DOI: https://doi.org/10.1021/jacs.6b00845.

    Article  Google Scholar 

  13. ZHANG Ying, FANG Z Z, XIA Yang, et al. Hydrogen assisted magnesiothermic reduction of TiO2 [J]. Chemical Engineering Journal, 2017, 308: 299–310. DOI: https://doi.org/10.1016/j.cej.2016.09.066.

    Article  Google Scholar 

  14. SHIN H S, HUR J M, JEONG S M, et al. Direct electrochemical reduction of titanium dioxide in molten lithium chloride [J]. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 438–442. DOI: https://doi.org/10.1016/j.jiec.2011.11.111.

    Article  Google Scholar 

  15. CHEN G. Interactions of molten salts with cathode products in the FFC Cambridge Process [J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27(12): 1572–1587.

    Article  Google Scholar 

  16. SUZUKI R O, INOUE S. Calciothermic reduction of titanium oxide in molten CaCl2 [J]. Metallurgical and Materials Transactions B, 2003, 34(3): 277–285. DOI: https://doi.org/10.1007/s11663-003-0073-2.

    Article  Google Scholar 

  17. ZHANG Ying, FANG Z Z, SUN Pei, et al. A perspective on thermochemical and electrochemical processes for titanium metal production [J]. JOM, 2017, 69(10): 1861–1868. DOI: https://doi.org/10.1007/s11837-017-2481-9.

    Article  Google Scholar 

  18. ZHOU Xin-yu, DOU Zhi-he, ZHANG Ting-an, et al. Preparation of low-oxygen Ti powder from TiO2 through combining self-propagating high temperature synthesis and electrodeoxidation [J]. Transactions of Nonferrous Metals Society of China, 2022, 32(10): 3469–3477. DOI: https://doi.org/10.1016/S1003-6326(22)66033-3.

    Article  Google Scholar 

  19. NAKAMURA M, OISHI T, et al. Electrochemical deoxidation of titanium [J]. Metallurgical and Materials Transactions B, 1993, 24(3): 449–455. DOI: https://doi.org/10.1007/BF02666427.

    Article  Google Scholar 

  20. TANINOUCHI Y K, HAMANAKA Y, OKABE T H. Electrochemical deoxidation of titanium and its alloy using molten magnesium chloride [J]. Metallurgical and Materials Transactions B, 2016, 47(6): 3394–3404. DOI: https://doi.org/10.1007/s11663-016-0792-9.

    Article  Google Scholar 

  21. OH J M, LEE B K, SUH C Y, et al. Deoxidation of Ti powder and preparation of Ti ingot with low oxygen concentration [J]. Materials Transactions, 2012, 53(6): 1075–1077. DOI: https://doi.org/10.2320/matertrans.m2012004.

    Article  Google Scholar 

  22. OH J M, KWON H, KIM W, et al. Oxygen behavior during non-contact deoxidation of titanium powder using calcium vapor [J]. Thin Solid Films, 2014, 551: 98–101. DOI: https://doi.org/10.1016/j.tsf.2013.11.076.

    Article  Google Scholar 

  23. LEFEBVRE L P, BARIL E. Effect of oxygen concentration and distribution on the compression properties on titanium foams [J]. Advanced Engineering Materials, 2008, 10(9): 868–876. DOI: https://doi.org/10.1002/adem.200800122.

    Article  Google Scholar 

  24. LI Dong-yang, HE Hao, LOU Jia, et al. Effect of oxygen contents on predominant sintering mechanism during initial stage of pure titanium powder [J]. Powder Technology, 2020, 361: 617–623. DOI: https://doi.org/10.1016/j.powtec.2019.11.070.

    Article  Google Scholar 

  25. YANG Y F, QIAN M. Fundamental understanding of the dissolution of oxide film on Ti powder and the unique scavenging feature by LaB6 [J]. Metallurgical and Materials Transactions A, 2018, 49(1): 1–6. DOI: https://doi.org/10.1007/s11661-017-4366-5.

    Article  Google Scholar 

  26. LI Dong-yang, HE Hao, LOU Jia, et al. Effect of oxygen contents on predominant sintering mechanism during initial stage of pure titanium powder [J]. Powder Technology, 2020, 361: 617–623. DOI: https://doi.org/10.1016/j.powtec.2019.11.070.

    Article  Google Scholar 

  27. PANIGRAHI B B, GODKHINDI M M, DAS K, et al. Sintering kinetics of micrometric titanium powder [J]. Materials Science and Engineering A, 2005, 396(1–2): 255–262. DOI: https://doi.org/10.1016/j.msea.2005.01.016.

    Article  Google Scholar 

  28. SONG M, HAN S, MIN D, et al. Diffusion of oxygen in β-titanium [J]. Scripta Materialia, 2008, 59(6): 623–626. DOI: https://doi.org/10.1016/j.scriptamat.2008.05.037.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHOU Xin-yu, ZHANG Chen and DU Daoguang handled the text of this paper and the formatting of this paper. DOU Zhi-he and ZHANG Ting-an prepared the concept for the paper. ZHOU Xin-yu did the experimental work for the paper. All authors have read and agreed to the published version of the manuscript. Finally, this whole paper submission was handled by ZHOU Xin-yu.

Corresponding authors

Correspondence to Zhi-he Dou  (豆志河) or Ting-an Zhang  (张廷安).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Foundation item: Projects((N2225012, N2224001-9) supported by the Fundamental Research Funds for Central Universities, China; Projects(U1908225, 52174333) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Xy., Dou, Zh., Zhang, Ta. et al. Oxygen removal and subsequent morphology transformation of TiOx<1 powders in electrodeoxidation process. J. Cent. South Univ. 30, 1435–1446 (2023). https://doi.org/10.1007/s11771-023-5332-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5332-6

Key words

关键词

Navigation