Skip to main content
Log in

Effects of (Li0.5Nb0.5)3+ co-substitution on microwave dielectric characteristics of MgAl2O4 ceramics

(Li0.5Nb0.5)3+共取代对MgAl2O4介电性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Nominal compositions MgAl2−x(Li0.5Nb0.5)xO4 (x=0–0.20) microwave dielectric ceramics were synthesized via the traditional solid-state reaction. The crystal structural characteristics, crystalline phases, and microwave dielectric properties were investigated. Rietveld refinement results showed that MgAl2O4 and Mg5Nb4O15 form a stable two-phase system. Densification of the specimens decreases monotonically with the increase of (Li0.5Nb0.5)3+ content when sintered at 1550 °C. The variation tendency of quality factor (Qf) is closely related to the densification, packing fraction and covalency. Likewise, the bond valence of the Al-site is responsible for the temperature coefficient of resonance frequency (τf). MgAl2−x(Li0.5Nb0.5)xO4 ceramic with x=0.04 can be well densified by sintering at 1550 °C for 4 h and exhibits optimum microwave dielectric properties with εr=8.21, Qf=81600 GHz, and τf=−94×10−6 °C−1.

摘要

采用固相反应法制备了MgAl 2−x (Li0.5Nb0.5)xO4 介电陶瓷, 分析了样品的晶体结构特征、物相组成以及介电性能。XRD 精修结果显示, MgAl2O4 和Mg5Nb4O15 形成了一个稳定的两相系统。在1550 ℃烧结时, 致密度随着(Li0.5Nb0.5)3+的含量增大而减小。品质因数Q f 的变化趋势与致密度、填充分数以及共价度密切相关。另外, 谐振频率温度系数τf 主要受Al 位键价影响。MgAl 2-x (Li0.5Nb0.5)xO4 陶瓷在1550 ℃烧结4 h 后拥有最优介电性能: εr =8.21, Qf =81600 GHz 和τf =−94×10−6−1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. CAVA R J. Dielectric materials for applications in microwave communications [J]. Journal of Materials Chemistry, 2001, 11(1): 54–62. DOI: https://doi.org/10.1039/B003681L.

    Article  Google Scholar 

  2. ZHU Xiao-dong, KONG Fan-tao, MA Xin-sheng. Sintering behavior and properties of MgTiO3/CaO-B2O3-SiO2 ceramic composites for LTCC applications [J]. Ceramics International, 2019, 45(2): 1940–1945. DOI: https://doi.org/10.1016/j.ceramint.2018.10.086.

    Article  Google Scholar 

  3. ANDREWS J G, BUZZI S, CHOI W, et al. What will 5G be? [J]. IEEE Journal on Selected Areas in Communications, 2014, 32(6): 1065–1082. DOI: https://doi.org/10.1109/JSAC.2014.2328098.

    Article  Google Scholar 

  4. ZHANG Ping, SUN Ke-xin, MAO Xu-rui, et al. Crystal structures and high microwave dielectric properties in Li+/Ti4+ ions co-doped Li3Mg2NbO6 ceramics [J]. Ceramics International, 2019, 46(6): 8097–8103. DOI: https://doi.org/10.1016/j.ceramint.2019.12.036.

    Article  Google Scholar 

  5. WANG Mao-hua, ZHOU Fu, WANG Qiu-li, et al. Synthesis of CaCu3Ti4O12 powders and ceramics by sol-gel method using decanedioic acid and its dielectric properties [J]. Journal of Central South University, 2012, 19(12): 3385–3389. DOI: https://doi.org/10.1007/s11771-012-1418-2.

    Article  Google Scholar 

  6. SURENDRAN K P, BIJUMON P V, MOHANAN P, et al. (1 - x)MgAl2O4-xTiO2 dielectrics for microwave and millimeter wave applications [J]. Applied Physics A, 2005, 81(4): 823–826. DOI: https://doi.org/10.1007/s00339-005-3282-5.

    Article  Google Scholar 

  7. ULLAH B, LEI Wen, YAO Yi-feng, et al. Structure and synergy performance of (1 - x)Sr0.25Ce0.5TiO3-xLa(Mg0.5Ti0.5)O3 based microwave dielectric ceramics for 5G architecture [J]. Journal of Alloys and Compounds, 2018, 763: 990–996. DOI: https://doi.org/10.1016/j.jallcom.2018.05.231.

    Article  Google Scholar 

  8. TSAI Wen-chou, LIOU Ying-huang, LIOU Yi-cheng. Microwave dielectric properties of MgAl2O4-CoAl2O4 spinel compounds prepared by reaction-sintering process [J]. Materials Science & Engineering B, 2012, 177(13): 1133–1137.

    Article  Google Scholar 

  9. HUANG Cheng-liang, TAI Chen-yi, HUANG C Y, et al. Low-loss microwave dielectrics in the spinel-structured (Mg1−xNix)Al2O4 solid solutions [J]. Journal of the American Ceramic Society, 2010, 93(7): 1999–2003. DOI: https://doi.org/10.1111/j.1551-2916.2010.03690.x.

    Google Scholar 

  10. ZHENG Chang-wei, WU Shu-ya, CHEN Xiang-ming, et al. Modification of MgAl2O4 microwave dielectric ceramics by Zn substitution [J]. Journal of the American Ceramic Society, 2007, 90(5): 1483–1486. DOI: https://doi.org/10.1111/j.1551-2916.2007.01550.x.

    Article  Google Scholar 

  11. LAN Xue-kai, LI Jie, ZOU Zheng-yu, et al. Improved sinterability and microwave dielectric properties of [Zn0.5Ti0.5]3+-doped ZnAl2O4 spinel solid solution [J]. Journal of the American Ceramic Society, 2019, 102(10): 5952–5957. DOI: https://doi.org/10.1111/jace.16453.

    Article  Google Scholar 

  12. QIN Tian-ying, ZHONG Chao-wei, QIN Yang, et al. The structure evolution and microwave dielectric properties of MgAl2−x(Mg0.5Ti0.5)xO4 solid solutions [J]. Ceramics International, 2020, 46(11): 19046–19051. DOI: https://doi.org/10.1016/j.ceramint.2020.04.236.

    Article  Google Scholar 

  13. YANG Pei-cheng, YANG Xi-zhi, LAI Yuan-ming, et al. Tailoring temperature stability of MgAl2O4 microwave dielectric ceramic via (Cu0.5Ti0.5)3+co-substituted [J]. Journal of Solid State Chemistry, 2022, 312: 123291. DOI: https://doi.org/10.1016/j.jssc.2022.123291.

    Article  Google Scholar 

  14. WANG Nan, ZHOU Huan-fu, GONG Jian-zhang, et al. Enhanced sinterability and microwave dielectric performance of (1−x)ZnAl2O4-x Li4/3Ti5/3O4 ceramics [J]. Journal of Electronic Materials, 2016, 45(6): 3157–3161. DOI: https://doi.org/10.1007/s11664-016-4437-1.

    Article  Google Scholar 

  15. JING Xiao-lin, TANG Xiao-li, TANG Wei-huan, et al. Effects of Zn2+ substitution on the sintering behaviour and dielectric properties of Li2Mg1−xZnxSiO4 ceramics [J]. Applied Physics A, 2019, 125(6): 415. DOI: https://doi.org/10.1007/s00339-019-2712-8.

    Article  Google Scholar 

  16. SU Wei-an, BIAN Xiao-bing, LIU Peng. Synthesis of Mg4Nb2O9 and its microwave property [J]. Bulletin of the Chinese Ceramic Society, 2005, 24(1): 48–50. DOI: http://gsytb.jtxb.cn/CN/Y2005/V24/I1/48. (in Chinese)

    Google Scholar 

  17. YOU Y C, PARK H L, SONG Y G, et al. Stable phases in the MgO-Nb2O5 system at 1250 °C [J]. Journal of Materials Science Letters, 1994, 13(20): 1487–1489. DOI: https://doi.org/10.1007/BF00419143.

    Article  Google Scholar 

  18. REIMANIS I E, KLEEBE H J. Reactions in the sintering of MgAl2O4 spinel doped with LiF [J]. Materials Research and Advanced Techniques, 2007, 98(12): 1273–1278. DOI: https://doi.org/10.3139/146.101591.

    Google Scholar 

  19. KAMBA S, PETZELT J, BUIXADERAS E, et al. High frequency dielectric properties of A5B4O15 microwave ceramics [J]. Journal of Applied Physics, 2001, 89(7): 3900–3906. DOI: https://doi.org/10.1063/1.1351873.

    Article  Google Scholar 

  20. KIM E, JEON C, CLEM P. Effects of crystal structure on the microwave dielectric properties of ABO4 (A=Ni, Mg, Zn and B=Mo, W) ceramics [J]. Journal of the American Ceramic Society, 2012, 95(9): 19046–19051. DOI: https://doi.org/10.1111/j.1551-2916.2012.05274.x.

    Article  Google Scholar 

  21. PEI Cui-jin, HOU Cai-dan, LI Yang, et al. A low εr and temperature-stable Li3Mg2SbO6 microwave dielectric ceramics [J]. Journal of Alloys and Compounds, 2019, 792: 46–49. DOI: https://doi.org/10.1016/j.jallcom.2019.04.019.

    Article  Google Scholar 

  22. PENN S, ALFORD N M, TEMPLETON A, et al. Effect of porosity and grain size on the microwave dielectric properties of sintered alumina [J]. Journal of the American Ceramic Society, 2005, 80(7): 1885–1888. DOI: https://doi.org/10.1111/j.1151-2916.1997.tb03066.x.

    Article  Google Scholar 

  23. XIANG Rui, LI Hao, ZHANG Peng-cheng, et al. Crystal structure and microwave dielectric properties of Mg2Ti1−xGa4/3xO4 (0.05⩽x⩽0.13) ceramics [J]. Ceramics International, 2021, 47(6): 8447–8452. DOI: https://doi.org/10.1016/j.ceramint.2020.11.210.

    Article  Google Scholar 

  24. BREEZE J D, PERKINS J M, MCCOMB D W, et al. Do grain boundaries affect microwave dielectric loss in oxides? [J]. Journal of the American Ceramic Society, 2009, 92(3): 671–674. DOI: https://doi.org/10.1111/j.1551-2916.2009.02932.x.

    Article  Google Scholar 

  25. KIM E S, CHUN B S, FREER R, et al. Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics [J]. Journal of the European Ceramic Society, 2010, 30(7): 1731–1736. DOI: https://doi.org/10.1016/j.jeurceramsoc.2009.12.018.

    Article  Google Scholar 

  26. BROWN I D, SHANNON R D. Empirical bond-strength-bond-length curves for oxides [J]. Acta Crystallographica Section A, 1973, 29(3): 266–282. DOI: https://doi.org/10.1107/S0567739473000689.

    Article  Google Scholar 

  27. KAN A, OGAWA H, OHSATO H. Synthesis and crystal structure-microwave dielectric property relations in Sn-substituted Ca3(Zr1−xSnx)Si2O9 solid solutions with cuspidine structure [J]. Japanese Journal of Applied Physics, 2007, 46(10B): 7108–7111. DOI: https://doi.org/10.1143/jjap.46.7108.

    Article  Google Scholar 

  28. GUREVICH V L, TAGANTSEV A K. Intrinsic dielectric loss in crystals [J]. Advances in Physics, 1991, 40(6): 719–767. DOI: https://doi.org/10.1080/00018739100101552.

    Article  Google Scholar 

  29. PANG Li-xia, ZHOU Di, QI Ze-ming, et al. Structure-property relationships of low sintering temperature scheelite-structured (1−x)BiVO4-xLaNbO4 microwave dielectric ceramics [J]. Journal of Materials Chemistry C, 2017, 5(10): 2695–2701. DOI: https://doi.org/10.1039/C6TC05670A.

    Article  Google Scholar 

  30. CHO Y S, YOON K H, LEE B D, et al. Understanding microwave dielectric properties of Pb-based complex perovskite ceramics via bond valence [J]. Ceramics International, 2004, 30(8): 2247–2250. DOI: https://doi.org/10.1016/j.ceramint.2003.12.007.

    Article  Google Scholar 

  31. YANG Hong-yu, ZHANG Shu-ren, CHEN Ya-wei, et al. Crystal chemistry, Raman spectra, and bond characteristics of trirutile-type Co0.5Ti0.5TaO4 microwave dielectric ceramics [J]. Inorganic Chemistry, 2019, 58(1): 968–976. DOI: https://doi.org/10.1021/acs.inorgchem.8b03169.

    Article  Google Scholar 

  32. WANG Gang, ZHANG Dai-nan, LI Jie, et al. Crystal structure, bond energy, Raman spectra, and microwave dielectric properties of Ti-doped Li3Mg2NbO6 ceramics [J]. Journal of the American Ceramic Society, 2020, 103(8): 4321–4332. DOI: https://doi.org/10.1111/jace.17091.

    Article  Google Scholar 

  33. WANG Fan-shuo, LAI Yuan-ming, ZENG Yi-ming, et al. Enhanced microwave dielectric properties in Mg2Al4Si5O18 through Cu2+ substitution [J]. European Journal of Inorganic Chemistry, 2021(25): 2464 - 2470. DOI: https://doi.org/10.1002/ejic.202100174.

  34. WU Fang-fang, ZHOU Di, DU Chao, et al. Design and fabrication of a satellite communication dielectric resonator antenna with novel low loss and temperature-stabilized (Sm1−xCax)(Nb1−xMox)O4 (x=0.15–0.7) microwave ceramics [J]. Chemistry of Materials, 2023, 35(1): 104–115. DOI: https://doi.org/10.1021/acs.chemmater.2c02663.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

YIN Jun was responsible for data analysis and edited the draft of the manuscript. YANG Xi-zhi prepared the specimens. LAI Yuan-ming conceived the study and provided an experimental environment. ZHANG Qin and SU Hua tested the dielectric properties of samples. QI Cong and LI Xiao tested XRD and EDS. WU Chong-sheng and JIANG Gang reviewed this manuscript.

Corresponding author

Correspondence to Yuan-ming Lai  (赖元明).

Additional information

Conflict of interest

YIN Jun, YANG Xi-zhi, LAI Yuan-ming, ZHANG Qin, QI Cong, SU Hua, LI Xiao, WU Chong-sheng and JIANG Gang declare that they have no conflict of interest.

Foundation item: Project(SKL-SPM-202021) supported by the State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals, China; Project(2023YFQ0082) supported by Sichuan Science and Technology Program, China; Project(EFMD2022005Z) supported by Guangdong Provincial Key Laboratory of Electronic Functional Materials and Devices, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Yang, Xz., Lai, Ym. et al. Effects of (Li0.5Nb0.5)3+ co-substitution on microwave dielectric characteristics of MgAl2O4 ceramics. J. Cent. South Univ. 30, 1461–1468 (2023). https://doi.org/10.1007/s11771-023-5321-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5321-9

Key words

关键词

Navigation