Skip to main content
Log in

Preparation of a novel surfactant dibutyl (2-(hydroxyamino)-2-oxoethyl) phosphonate and its adsorption mechanism in cassiterite flotation

二丁基(2-(羟基氨基)-2-氧乙基)膦酸酯的制备及在锡石浮选中的吸附机理

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A novel surfactant dibutyl (2-(hydroxyamino)-2-oxoethyl) phosphonate (DBPHA) was designed and synthesized as a cassiterite flotation collector. Micro-flotation experiment results indicated that under the condition of pH~9.00, collector initial concentration 8×10−5 mol/L, the flotation recovery of cassiterite reached about 90% using DBPHA as collector, while only 22% using BHA as collector. The adsorption mechanism of DBPHA on the cassiterite surface was investigated by zeta potential, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy measurements and density functional theory calculations. The changes in the zeta potential for the DBPHA-treated cassiterite particles demonstrated that DBPHA chemisorbed onto the cassiterite surface, while the addition of benzohydroxamic acid (BHA) barely changed the zeta potential of cassiterite. Density functional theory predicted that DBPHA possessed two active sites of the reaction center, namely, hydroxamate and phosphoryl groups, while BHA only had one hydroxamate group. Fourier transform infrared spectroscopy and high-resolution X-ray photoelectron spectroscopy spectra revealed that the chemisorption of DBPHA on cassiterite produced DBPHA-Sn surface species, where both hydroxamate (—C(=O) —NHOH) and phosphoryl (P=O) groups bonded with surface Sn atoms, causing the hydrophobic groups of DBPHA to orient towards the solutions for attaching bubbles. Therefore, an effective enrichment of cassiterite was achieved.

摘要

设计并合成了一种新型表面活性剂二丁基(2-(羟基氨基)-2-氧乙基)膦酸酯(DBPHA)作为锡石浮选 捕收剂。单矿物浮选实验结果表明, 在 pH~9.00、捕收剂初始浓度8×10−5 mol/L 的条件下, 以DBPHA 为捕收剂的锡石浮选回收率可达90%左右, 而以苯甲羟肟酸(BHA)为捕收剂的浮选回收率仅为22%。 通过zeta 电位、傅里叶变换红外光谱(FTIR)、X射线光电子能谱(XPS)测量和密度泛函理论计算研究了 DBPHA在锡石表面的吸附机理。DBPHA处理过的锡石颗粒zeta 电位变化表明DBPHA化学吸附到锡 石表面, 而添加BHA几乎没有改变锡石的zeta 电位。密度泛函理论预测DBPHA具有两个反应中心活 性位点, 即异羟肟酸基和磷酰基, 而BHA只有一个异羟肟酸基活性位点。FTIR 和高分辨XPS 表明, DBPHA在锡石上的化学吸附产生了DBPHA-Sn表面物质, 其中异羟肟酸基(—C(=O)—NHOH) 和磷酰 基(P=O)基团与表面Sn 原子键合, 使得DBPHA的疏水基团朝向溶液中, 粘附气泡。因此, 实现了锡—C(=O)—NHOH)和磷酰 基(P=O)基团与表面Sn 原子键合, 使得DBPHA的疏水基团朝向溶液中, 粘附气泡。因此, 实现了锡 石的有效富集。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. CHEN Yu-meng, LI Hua, FENG Dong-xia, et al. A recipe of surfactant for the flotation of fine cassiterite particles [J]. Minerals Engineering, 2021, 160: 106658. DOI: https://doi.org/10.1016/j.mineng.2020.106658.

    Article  Google Scholar 

  2. JIN Sai-zhen, ZHANG Peng-yu, OU Le-ming, et al. Flotation of cassiterite using alkyl hydroxamates with different carbon chain lengths: A theoretical and experimental study [J]. Minerals Engineering, 2021, 170: 107025. DOI: https://doi.org/10.1016/j.mineng.2021.107025.

    Article  Google Scholar 

  3. LIU Jie, KONG De-cui, XIE Rui-qi, et al. Flotation behavior and mechanism of hydroxycitric acid as a depressant on the flotation separation of cassiterite from calcite [J]. Minerals Engineering, 2021, 170: 107046. DOI: https://doi.org/10.1016/j.mineng.2021.107046.

    Article  Google Scholar 

  4. LU Yu-xi, WANG Shuai, ZHONG Hong. Optimization of conventional hydroxamic acid for cassiterite flotation: Application of structural modification under principle of isomerism [J]. Minerals Engineering, 2021, 167: 106901. DOI: https://doi.org/10.1016/j.mineng.2021.106901.

    Article  Google Scholar 

  5. GONG Gui-chen, LIU Jie, HAN Yue-xin, et al. Study on flotation performances and adsorption mechanism of 2-carboxyethylphenylphosphinic acid to cassiterite [J]. Separation Science and Technology, 2019, 54(11): 1815–1828. DOI: https://doi.org/10.1080/01496395.2018.1549573.

    Article  Google Scholar 

  6. GONG Gui-chen, WANG Pan, LIU Jie, et al. Effect and mechanism of Cu(II) on flotation separation of cassiterite from fluorite [J]. Separation and Purification Technology, 2020, 238: 116401. DOI: https://doi.org/10.1016/j.seppur.2019.116401.

    Article  Google Scholar 

  7. REN Liu-yi, QIU Hang, ZHANG Ming, et al. Behavior of lead ions in cassiterite flotation using octanohydroxamic acid [J]. Industrial & Engineering Chemistry Research, 2017, 56(30): 8723–8728. DOI: https://doi.org/10.1021/acs.iecr.7b02126.

    Article  Google Scholar 

  8. SUN Lei, HU Yue-hua, SUN Wei. Effect and mechanism of octanol in cassiterite flotation using benzohydroxamic acid as collector [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(12): 3253–3257. DOI: https://doi.org/10.1016/S1003-6326(16)64458-8.

    Article  Google Scholar 

  9. TIAN Meng-jie, KHOSO S A, WANG Li, et al. Selective separation behavior and its molecular mechanism of cassiterite from quartz using cupferron as a novel flotation collector with a lower dosage of Pb21 ions [J]. Applied Surface Science, 2019, 486: 228–238. DOI: https://doi.org/10.1016/j.apsusc.2019.05.039.

    Article  Google Scholar 

  10. TIAN Meng-jie, LIU Run-qing, GAO Zhi-yong, et al. Activation mechanism of Fe(III) ions in cassiterite flotation with benzohydroxamic acid collector [J]. Minerals Engineering, 2018, 119: 31–37. DOI: https://doi.org/10.1016/j.mineng.2018.01.011.

    Article  Google Scholar 

  11. WANG Pei-pei, QIN Wen-qing, REN Liu-yi, et al. Solution chemistry and utilization of alkyl hydroxamic acid in flotation of fine cassiterite [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6): 1789–1796. DOI: https://doi.org/10.1016/S1003-6326(13)62662-X.

    Article  Google Scholar 

  12. ZHAO Gang, ZHOU Xiao-tong, LI Fang-xu, et al. Flotation performance of anisic hydroxamic acid as new collector for tungsten and tin minerals [J]. Journal of Central South University, 2022, 29(11): 3645–3655. DOI: https://doi.org/10.1007/s11771-022-5182-7.

    Article  Google Scholar 

  13. SUN Qing, DONG Yan, WANG Shuai, et al. Amide group enhanced self-assembly and adsorption of thioether-containing hydroxamic acid on cassiterite surface [J]. AIChE Journal, 2023: e18023. DOI: https://doi.org/10.1002/aic.18023.

  14. SUN Qing, LU Yu-xi, WANG Shuai, et al. A novel surfactant 2- (benzylthio) -acetohydroxamic acid: Synthesis, flotation performance and adsorption mechanism to cassiterite, calcite and quartz [J]. Applied Surface Science, 2020, 522: 146509. DOI: https://doi.org/10.1016/j.apsusc.2020.146509.

    Article  Google Scholar 

  15. SREENIVAS T, PADMANABHAN NPH. Surface chemistry and flotation of cassiterite with alkyl hydroxamates [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 205(1–2): 47–59. DOI: https://doi.org/10.1016/S0927-7757(01)01146-3.

    Article  Google Scholar 

  16. FENG Qi-cheng, ZHAO Wen-juan, WEN Shu-ming, et al. Activation mechanism of lead ions in cassiterite flotation with salicylhydroxamic acid as collector [J]. Separation and Purification Technology, 2017, 178: 193–199. DOI: https://doi.org/10.1016/j.seppur.2017.01.053.

    Article  Google Scholar 

  17. QIN Wen-qing, XU Yang-bao, LIU Hui, et al. Flotation and surface behavior of cassiterite with salicylhydroxamic acid [J]. Industrial & Engineering Chemistry Research, 2011, 50(18): 10778–10783. DOI: https://doi.org/10.1021/ie200800d.

    Article  Google Scholar 

  18. WU X Q, ZHU J G. Selective flotation of cassiterite with benzohydroxamic acid [J]. Minerals Engineering, 2006, 19(14): 1410–1417. DOI: https://doi.org/10.1016/j.mineng.2006.02.003.

    Article  Google Scholar 

  19. CAO Zhan-fang, QIU Pei, WANG Shuai, et al. Benzohydroxamic acid to improve iron removal from potash feldspar ores [J]. Journal of Central South University, 2018, 25(9): 2190–2198. DOI: https://doi.org/10.1007/s11771-018-3907-4.

    Article  Google Scholar 

  20. ZHU Zhao-wu, PRANOLO Y, CHENG Chu-yong. Uranium recovery from strong acidic solutions by solvent extraction with Cyanex 923 and a modifier [J]. Minerals Engineering, 2016, 89: 77–83. DOI: https://doi.org/10.1016/j.mineng.2016.01.016.

    Article  Google Scholar 

  21. TURGIS R, LEYDIER A, ARRACHART G, et al. Uranium extraction from phosphoric acid using bifunctional amido-phosphonic acid ligands [J]. Solvent Extraction and Ion Exchange, 2014, 32(5): 478–491.

    Article  Google Scholar 

  22. SINGH S K, DHAMI P S, DAKSHINAMOORTHY A, et al. Studies on the recovery of uranium from phosphoric acid medium using synergistic mixture of 2-ethyl hexyl hydrogen 2-ethyl hexyl phosphonate and octyl(phenyl)-N, N-diisobutyl carbamoyl methyl phosphine oxide [J]. Separation Science and Technology, 2009, 44(2): 491–505. DOI: https://doi.org/10.1080/01614940802285927.

    Article  Google Scholar 

  23. NAZAL M K, ALBAYYARI M A, KHALILI F I, et al. Synergistic effect of tri-n-butyl phosphate (TBP) or tri-n-octyl phosphine oxide (TOPO) with didodecylphosphoric acid (HDDPA) on extraction of uranium(VI) and thorium(IV) ions [J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 312(1): 133–139. DOI: https://doi.org/10.1007/s10967-017-5204-3.

    Article  Google Scholar 

  24. QI Jing, DONG Yan, LIU Sheng, et al. A selective flotation of cassiterite with a dithiocarbarnate-hydroxarnate molecule and its adsorption mechanism [J]. Applied Surface Science, 2021, 538: 147996. DOI: https://doi.org/10.1016/j.apsusc.2020.147996.

    Article  Google Scholar 

  25. ZHU Yong-kai, SUN Chuan-yao, WU Wei-guo. A new synthetic chelating collector for the flotation of oxidized-lead mineral [J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2007, 14(1): 9–13. DOI: https://doi.org/10.1016/S1005-8850(07)60003-6.

    Article  Google Scholar 

  26. HUANG Yao-guo, LIU Guang-yi, LIU Jun, et al. Thiadiazole-thione surfactants: Preparation, flotation performance and adsorption mechanism to malachite [J]. Journal of Industrial and Engineering Chemistry, 2018, 67: 99–108. DOI: https://doi.org/10.1016/j.jiec.2018.06.020.

    Article  Google Scholar 

  27. LIU Guang-yi, XIAO Jing-jing, LIU Jun, et al. In situ probing the self-assembly of 3-hexyl-4-amino-1, 2, 4-triazole-5-thione on chalcopyrite surfaces [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 511: 285–293. DOI: https://doi.org/10.1016/j.colsurfa.2016.10.017.

    Article  Google Scholar 

  28. FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09 (Revision A. 1) [M]. Gaussian, Inc.: https://gaussian.com/.2009.

  29. LIU Guang-yi, XIAO Jing-jing, ZHOU Di-wen, et al. A DFT study on the structure-reactivity relationship of thiophosphorus acids as flotation collectors with sulfide minerals: Implication of surface adsorption [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434: 243–252. DOI: https://doi.org/10.1016/j.colsurfa.2013.05.050.

    Article  Google Scholar 

  30. GHANAVATKAR C W, MISHRA V R, SEKAR N, et al. Benzothiazole pyrazole containing emissive azo dyes decorated with ESIPT core: Linear and non linear optical properties, Z scan, optical limiting, laser damage threshold with comparative DFT studies [J]. Journal of Molecular Structure, 2020, 1203: 127401. DOI: https://doi.org/10.1016/j.molstruc.2019.127401.

    Article  Google Scholar 

  31. AMRUTHA KALA A L, KUMARA K, HAROHALLY N V, et al. Synthesis, characterization and hydrogen bonding attributes of halogen bonded O-hydroxy Schiff bases: Crystal structure, Hirshfeld surface analysis and DFT studies [J]. Journal of Molecular Structure, 2020, 1202: 127238. DOI: https://doi.org/10.1016/j.molstruc.2019.127238.

    Article  Google Scholar 

  32. ERTL P, ROHDE B, SELZER P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties [J]. Journal of Medicinal Chemistry, 2000, 43(20): 3714–3717. DOI: https://doi.org/10.1021/jm000942e.

    Article  Google Scholar 

  33. Molinspiration Property Calculation Service Slovensky Grob [EB/OL]. https://www.molinspiration.com/services/logp.html/.2022.

  34. LI Fang-xu, ZHONG Hong, ZHAO Gang, et al. Flotation performances and adsorption mechanism of α -hydroxyoctyl phosphinic acid to cassiterite [J]. Applied Surface Science, 2015, 353: 856–864. DOI: https://doi.org/10.1016/j.apsusc.2015.06.147.

    Article  Google Scholar 

  35. DENG Lan-qing, WANG Shuai, ZHONG Hong, et al. N-(6-(hydroxyamino)-6-oxohexyl) decanamide collector: Flotation performance and adsorption mechanism to diaspore [J]. Applied Surface Science, 2015, 347: 79–87. DOI: https://doi.org/10.1016/j.apsusc.2015.03.138.

    Article  Google Scholar 

  36. LIU Sheng, ZHONG Hong, LIU Guang-yi, et al. Cu(I)/Cu(II) mixed-valence surface complexes of S-[(2-hydroxyamino)-2-oxoethyl]-N, N-dibutyldithiocarbamate: Hydrophobic mechanism to malachite flotation [J]. Journal of Colloid and Interface Science, 2018, 512: 701–712. DOI: https://doi.org/10.1016/j.jcis.2017.10.063.

    Article  Google Scholar 

  37. LIU Sheng, XIE Lei, LIU Jun, et al. Probing the interactions of hydroxamic acid and mineral surfaces: Molecular mechanism underlying the selective separation [J]. Chemical Engineering Journal, 2019, 374: 123–132. DOI: https://doi.org/10.1016/j.cej.2019.05.152.

    Article  Google Scholar 

  38. HUANG Kai-hua, HUANG Xiao-ping, JIA Yun, et al. A novel surfactant styryl phosphonate mono-iso-octyl ester with improved adsorption capacity and hydrophobicity for cassiterite flotation [J]. Minerals Engineering, 2019, 142: 105895. DOI: https://doi.org/10.1016/j.mineng.2019.105895.

    Article  Google Scholar 

  39. PECHEUR O, GUILLAUMONT D, DOURDAIN S, et al. Uranium extraction by a bifunctional amido-phosphonic acid: Coordination structure and aggregation [J]. Solvent Extraction and Ion Exchange, 2016, 34(3): 260–273. DOI: https://doi.org/10.1080/07366299.2016.1169146.

    Article  Google Scholar 

  40. DAASCH L, SMITH D. Infrared spectra of phosphorus compounds [J]. Analytical Chemistry, 1951, 23(6): 853–868. DOI: https://doi.org/10.1021/ac60054a008.

    Article  Google Scholar 

  41. YANG Sen, HUA Meng-xia, SHEN Liang, et al. Phosphonate and carboxylic acid co-functionalized MoS2 sheets for efficient sorption of uranium and europium: Multiple groups for broad-spectrum adsorption [J]. Journal of Hazardous Materials, 2018, 354: 191–197. DOI: https://doi.org/10.1016/j.jhazmat.2018.05.005.

    Article  Google Scholar 

  42. FAN Hong-li, QIN Jing-qin, LIU Jun, et al. Investigation into the flotation of malachite, calcite and quartz with three phosphate surfactants [J]. Journal of Materials Research and Technology, 2019, 8(6): 5140–5148. DOI: https://doi.org/10.1016/j.jmrt.2019.08.037.

    Article  Google Scholar 

  43. QI Jing, LIU Sheng, DONG Yan, et al. Revealing the role of dithiocarbamate ester group in hydroxamic acid flotation of cassiterite with in situ AFM, DFT and XPS [J]. Applied Surface Science, 2022, 604: 154521. DOI: https://doi.org/10.1016/j.apsusc.2022.154521.

    Article  Google Scholar 

  44. FAN Hong-li, YANG Xiang-lin, QI Jing, et al. A comparative investigation into floatability of bastnaesite with three di/trialkyl phosphate surfactants [J]. Journal of Rare Earths, 2021, 39(11): 1442–1449. DOI: https://doi.org/10.1016/j.jre.2020.09.024.

    Article  Google Scholar 

  45. YANG Xiang-lin, LIU Sheng, LIU Guang-yi, et al. A DFT study on the structure - reactivity relationship of aliphatic oxime derivatives as copper chelating agents and malachite flotation collectors [J]. Journal of Industrial and Engineering Chemistry, 2017, 46: 404–415. DOI: https://doi.org/10.1016/j.jiec.2016.11.010.

    Article  Google Scholar 

  46. SHANG Xian-mei, CUI Jing-rong, WU Ji-zhou, et al. Polynuclear diorganotin(IV) complexes with arylhydroxamates: Syntheses, structures and in vitro cytotoxic activities [J]. Journal of Inorganic Biochemistry, 2008, 102(4): 901–909. DOI: https://doi.org/10.1016/j.jinorgbio.2007.12.010.

    Article  Google Scholar 

  47. SHANG Xian-mei, DING Nan, XIANG Guang-ya. Novel di-n-butyltin(IV) derivatives: Synthesis, high levels of cytotoxicity in tumor cells and the induction of apoptosis in KB cancer cells [J]. European Journal of Medicinal Chemistry, 2012, 48: 305–312. DOI: https://doi.org/10.1016/j.ejmech.2011.12.032.

    Article  Google Scholar 

  48. ZHAO Xiao-juan, ZHANG Qing-fu, LI Da-cheng, et al. Syntheses, structural characterizations and properties of 12-MC-4 organotin(IV) metallacrowns: [12-MCRSn(IV)N(Shi)-4] and [12-MCRSn(IV)N(Clshi)-4] (R=Et, Bu ph; H3shi= salicylhydroxamic acid; H3Clshi=5-chlorosalicylhydroxamic acid) [J]. Journal of Organometallic Chemistry, 2010, 695(18): 2134–2141. DOI: https://doi.org/10.1016/j.jorganchem.2010.05.027.

    Article  Google Scholar 

  49. FUKUI K. Role of frontier orbitals in chemical reactions [J]. Science, 1982, 218(4574): 747–754. DOI: https://doi.org/10.1126/science.218.4574.747.

    Article  Google Scholar 

  50. DUAN Hui-qi, HUANG Xiao-ping, CAO Xiao-yu, et al. Investigating the flotation performance and interfacial adsorption mechanism of N-benzoyl-N’, N’-diethyl thiourea on chalcopyrite and pyrite [J]. Minerals Engineering, 2021, 172: 107178. DOI: https://doi.org/10.1016/j.mineng.2021.107178.

    Article  Google Scholar 

  51. CHEN Jian-hua, LI Yu-qiong. Orbital symmetry matching study on the interactions of flotation reagents with mineral surfaces [J]. Minerals Engineering, 2022, 179: 107469. DOI: https://doi.org/10.1016/j.mineng.2022.107469.

    Article  Google Scholar 

  52. KUNDI V, HO J. Predicting octanol-water partition coefficients: Are quantum mechanical implicit solvent models better than empirical fragment-based methods? [J]. The Journal of Physical Chemistry B, 2019, 123(31): 6810–6822. DOI: https://doi.org/10.1021/acs.jpcb.9b04061.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XIAO Jing-jing provided the concept and edited the draft of manuscript. WU Jing-zhi analyzed the measured data. LIU Si-si and TU Jia conducted the literature review. LIU RU-kuan edited the draft of manuscript. LI Chang-zhu and ZHAO Gang established the models and calculated the predicted displacement.

Corresponding authors

Correspondence to Chang-zhu Li  (李昌珠) or Gang Zhao  (赵刚).

Additional information

Conflict of interest

XIAO Jing-jing, WU Jing-zhi, LIU Si-si, TU Jia, LIU Ru-kuan, LI Chang-zhu, and ZHAO Gang declare that they have no conflict of interest.

Foundation item: Project(22108114) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Jj., Wu, Jz., Liu, Ss. et al. Preparation of a novel surfactant dibutyl (2-(hydroxyamino)-2-oxoethyl) phosphonate and its adsorption mechanism in cassiterite flotation. J. Cent. South Univ. 30, 1569–1580 (2023). https://doi.org/10.1007/s11771-023-5318-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5318-4

Key words

关键词

Navigation